Activity of levofloxacin, lomefloxacin and moxifloxacin against 20 FI+ and 20 FI- strains of Yersinia pestis was studied. It was shown that the strains were highly susceptible to the fluoroquinolones. In the experiments on mice subcutaneously infected with suspension of strains 231 FI+ and 231 FI- of Y. pestis in a dose of about 1000 LD50 (10(4) microbial cells) the ED50 of levofloxacin and moxifloxacin was 5.5-14.0 mg/kg independent of the infective culture phenotype and that of lomefloxacin was 18.5 mg/kg. Estimation of the impact of the pathogen infective dose value on the results of the experimental plague treatment with the therapeutic dose equivalent to the human one showed high efficacy of the fluoroquinolones (efficacy index of 10(4)). The treatment for 7 days provided 90-100-percent survival of the animals. The prophylactive use of lomefloxacin (in 5 hours - 5 days) was less efficient (70-80% of the survivals) in the animals infected with the antigen-changed (FI-) variant of the pathogen. Levofloxacin and moxifloxacin provided 90-100-percent survival of the animals treated for a course of 5 days independent of the pathogen phenotype. The study demonstrated that the use oflevofloxacin, lomefloxacin and moxifloxacin was prospective for the prophylaxis and therapy of experimental plague.

Download full-text PDF

Source

Publication Analysis

Top Keywords

lomefloxacin moxifloxacin
12
experimental plague
12
levofloxacin lomefloxacin
8
fi+ fi-
8
fi- strains
8
strains yersinia
8
yersinia pestis
8
levofloxacin moxifloxacin
8
provided 90-100-percent
8
90-100-percent survival
8

Similar Publications

This study aimed to investigate the differences in the mechanisms of microscopic hepatotoxicity, developmental toxicity, and neurotoxicity in aquatic organisms co-exposed to styrene-butadiene rubber tire microplastics (SBR TMPs) and fluoroquinolone antibiotics (FQs). We found that hepatotoxicity in zebrafish induced by SBR TMPs and FQs was significantly higher than developmental toxicity and neurotoxicity. Furthermore, the main effects of the FQs primarily manifested as synergistic toxicity, whereas the low- and high-order interactions of the FQs mainly exhibited synergistic and antagonistic effects, respectively.

View Article and Find Full Text PDF

Degradation of lomefloxacin by MoS/MIL-53(Fe, Cu) catalyst in heterogeneous electro-Fenton process.

Environ Sci Pollut Res Int

March 2023

College of Civil Engineering and Architecture, Zhejiang University, and Key Laboratory of Drinking Water Safety and Distribution Technology of Zhejiang Province, Hangzhou, 310058, China.

A novel heterogeneous catalyst named MoS/MIL-53(Fe, Cu) (MMFC) was prepared by hydrothermal method and applied in a heterogeneous electro-Fenton (hetero-EF) system for lomefloxacin (LOM) degradation in this work. Under the optimal conditions of current density 3 mA/cm, catalyst dosage 0.100 g/L, and initial pH 6, 93.

View Article and Find Full Text PDF

Fluoroquinolones cause phototoxic reactions, manifested as different types of skin lesions, including hyperpigmentation. The disturbances of melanogenesis indicate that fluoroquinolones may affect cellular processes in melanocytes. It has been reported that these antibiotics may bind with melanin and accumulate in pigmented cells.

View Article and Find Full Text PDF

Phototoxicity of fluoroquinolones is connected with oxidative stress induction. Lomefloxacin (8-halogenated derivative) is considered the most phototoxic fluoroquinolone and moxifloxacin (8-methoxy derivative) the least. Melanin pigment may protect cells from oxidative damage.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!