A pulsatile flow pumping system is developed to replicate flow waveforms with reasonable accuracy for experiments simulating physiological blood flows at numerous points in the body. The system divides the task of flow waveform generation between two pumps: a gear pump generates the mean component and a piston pump generates the oscillatory component. The system is driven by two programmable servo controllers. The frequency response of the system is used to characterize its operation. The system has been successfully tested in vascular flow experiments where sinusoidal, carotid, and coronary flow waveforms are replicated.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2807595 | PMC |
http://dx.doi.org/10.1007/s11517-009-0573-6 | DOI Listing |
Ind Eng Chem Res
January 2025
Department of Chemistry, Physics, and Materials Science, Fayetteville State University, Fayetteville, North Carolina 28301, United States.
An efficient Suzuki cross-coupling reaction under continuous flow conditions was developed utilizing an immobilized solid supported catalyst consisting of bimetallic nickel-palladium nanoparticles (Ni-Pd/MWCNTs). In this process, the reactants can be continuously pumped into a catalyst bed at a high flow rate of 0.6 mL/min and the temperature of 130 °C while the Suzuki products are recovered in high steady-state yields for prolonged continuous processing.
View Article and Find Full Text PDFRev Cardiovasc Med
January 2025
Center for Preclinical Surgical & Interventional Research, The Texas Heart Institute, Houston, TX 77030, USA.
The evolution of left ventricular assist devices (LVADs) from large, pulsatile systems to compact, continuous-flow pumps has significantly improved implantation outcomes and patient mobility. Minimally invasive surgical techniques have emerged that offer reduced morbidity and enhanced recovery for LVAD recipients. Innovations in wireless power transfer technologies aim to mitigate driveline-related complications, enhancing patient safety and quality of life.
View Article and Find Full Text PDFAnn Biomed Eng
January 2025
BioCardioLab, Fondazione Toscana G. Monasterio, 54100, Massa, Italy.
Extracorporeal Membrane Oxygenation (ECMO) is a modality of extracorporeal life support which allows temporary support in cases of cardiopulmonary failure and cardiogenic shock. This study presents a valveless pump that works by the Liebau effect as a possible pumping system in ECMO circuits, replacing the current roller and centrifugal pumps. For this purpose, a mock circulatory loop emulating the haemodynamic of the right part of the heart has been constructed.
View Article and Find Full Text PDFNutrients
January 2025
School of Molecular Sciences, The University of Western Australia, Crawley, WA 6009, Australia.
Background: Whilst it is inconvenient and time-intensive, predominantly (PP) and exclusively pumping (EP) mothers rely on breast expression to provide milk for their infants and to ensure continued milk supply, yet these populations are poorly understood.
Methods: We assessed and characterised Western Australian PP mothers ( = 93) regarding 24 h milk production (MP) and infant milk intake and demographics, perinatal complications and breastfeeding difficulties, the frequencies of which were compared with published general population frequencies. Pumping efficacy and milk flow parameters during a pumping session in PP mothers ( = 32) were compared with those that pump occasionally (reference group, = 60).
Sensors (Basel)
January 2025
Instituto de Engenharia de Sistemas e Computadores-Microsistemas e Nanotecnologias (INESC-MN), Rua Alves Redol, 1000-029 Lisbon, Portugal.
Point-of-care (PoC) devices offer a promising solution for fast, portable, and easy-to-use diagnostics. These characteristics are particularly relevant in agrifood fields like viticulture where the early detection of plant stresses is crucial to crop yield. Microfluidics, with its low reagent volume requirements, is well-suited for such applications.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!