Samples collected from wild and domestic suids in Nigeria, over a 3-year period (2003-2006), were evaluated for African swine fever (ASF) virus genome presence by targeting three discrete genome regions, namely the 478-bp C-terminal p72 gene region advocated for genotype assignment, a 780-bp region spanning the 5'-ends of the pB125R and pB646L (p72) genes and the hypervariable central variable region (CVR) encoded within the 9RL ORF (pB602L). ASF virus (ASFV) presence was confirmed in 23 of the 26 wild and domestic pigs evaluated. No evidence of ASF infection was found in two warthogs from Adamawa State; however, one bushpig from Plateau State was positive. Nucleotide sequences of the 478-bp and 780-bp amplicons were identical across all ASFV-positive samples sequenced. However, five discrete CVR variants were recovered, bringing the total number identified to date, from Nigeria, to six. The largest of the CVR variants, termed 'Tet-36' was identical to a virus causing outbreaks in neighbouring Benin in 1997, indicating a prolonged persistence of this virus type in Nigeria. Co-circulation of three tetramer types (Tet-36, Tet-27 and Tet-20) was found in Plateau State in July 2004, whilst in Benue State, two tetramer types (Tet-20 and Tet-21) were present in August 2005. Despite simultaneous field presence, individual co-infection was not observed. This study has reaffirmed the epidemiological utility of the CVR genome region for distinguishing between geographically and temporally constrained genotype I viruses, and has revealed the presence of multiple ASFV variants in Nigeria.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s11262-009-0444-0DOI Listing

Publication Analysis

Top Keywords

african swine
8
swine fever
8
epidemiological utility
8
wild domestic
8
asf virus
8
plateau state
8
cvr variants
8
tetramer types
8
nigeria
5
virus
5

Similar Publications

Structural basis of RNA polymerase complexes in African swine fever virus.

Nat Commun

January 2025

State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China.

African swine fever virus is highly contagious and causes a fatal infectious disease in pigs, resulting in a significant global impact on pork supply. The African swine fever virus RNA polymerase serves as a crucial multifunctional protein complex responsible for genome transcription and regulation. Therefore, it is essential to investigate its structural and functional characteristics for the prevention and control of African swine fever.

View Article and Find Full Text PDF

African swine fever (ASF) is a lethal disease of domestic pigs that is currently challenging swine production in large areas of Eurasia. The causative agent, ASF virus (ASFV), is a large, double-stranded and structurally complex virus. The ASFV genome encodes for more than 160 proteins; however, the functions of most of these proteins are still in the process of being characterized.

View Article and Find Full Text PDF

The lack of data on the whole-genome analysis of genotype II African swine fever virus (ASFV) isolates significantly hinders our understanding of its molecular evolution, and as a result, the range of single nucleotide polymorphisms (SNPs) necessary to describe a more accurate and complete scheme of its circulation. In this regard, this study aimed to identify unique SNPs, conduct phylogenetic analysis, and determine the level of homology of isolates obtained in the period from 2019 to 2022 in the central and eastern regions of Russia. Twenty-one whole-genome sequences of genotype II ASFV isolates were assembled, analyzed, and submitted to GenBank.

View Article and Find Full Text PDF

African swine fever (ASF) emerged in Germany in 2020. A few weeks after the initial occurrence, infected wild boar were detected in Saxony. In this study, data from wild boar surveillance in Saxony were analyzed.

View Article and Find Full Text PDF

One of the key surveillance strategies for the early detection of an African swine fever (ASF) incursion into a country is the sampling of wild or feral pig populations. In Australia, the remote northern regions are considered a risk pathway for ASF incursion due to the combination of high numbers of feral pigs and their close proximity to countries where ASF is present. These regions primarily consist of isolated arid rangelands with high average environmental temperatures.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!