Biological signal transduction commonly involves cooperative interactions in the binding of ligands to their receptors. In many cases, ligand concentrations in vivo are close to the value of the dissociation constant of their receptors, resulting in the phenomenon of ligand depletion. Using examples based on rotational bias of bacterial flagellar motors and calcium binding to mammalian calmodulin, we show that ligand depletion diminishes cooperativity and broadens the dynamic range of sensitivity to the signaling ligand. As a result, the same signal transducer responds to different ranges of signal with various degrees of cooperativity according to its effective cellular concentration. Hence, results from in vitro dose-response analyses cannot be applied directly to understand signaling in vivo. Moreover, the receptor concentration is revealed to be a key element in controlling signal transduction and we propose that its modulation constitutes a new way of controlling sensitivity to signals. In addition, through an analysis of the allosteric enzyme aspartate transcarbamylase, we demonstrate that the classical Hill coefficient is not appropriate for characterizing the change in conformational state upon ligand binding to an oligomeric protein (equivalent to a dose-response curve), because it ignores the cooperativity of the conformational change for the corresponding equivalent monomers, which are generally characterized by a Hill coefficient . Therefore, we propose a new index of cooperativity based on the comparison of the properties of oligomers and their equivalent monomers.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2797075 | PMC |
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0008449 | PLOS |
Unlabelled: X-linked Lymphoproliferative Syndromes (XLP), which arise from mutations in the or genes, are characterized by the inability to control Epstein-Barr Virus (EBV) infection. While primary EBV infection triggers severe diseases in each, lymphomas occur at high rates with XLP-1 but not with XLP-2. Why XLP-2 patients are apparently protected from EBV-driven lymphomagenesis, in contrast to all other described congenital conditions that result in heightened susceptibility to EBV, remains a key open question.
View Article and Find Full Text PDFCancers (Basel)
January 2025
Department of Surgery, University of Rochester Medical Center, Rochester, NY 14642, USA.
: Pancreatic ductal adenocarcinoma (PDAC), expecting to be the second leading cause of cancer deaths by 2030, resists immune checkpoint therapies due to its immunosuppressive tumor microenvironment (TME). Leukemia inhibitory factor (LIF) is a key target in PDAC, promoting stemness, epithelial-mesenchymal transition (EMT), and therapy resistance. Phase 1 clinical trials showed anti-LIF therapy is safe but with limited efficacy, suggesting better outcomes when combined with chemotherapy, radiotherapy, or immunotherapy.
View Article and Find Full Text PDFJ Infect Dis
January 2025
School of Medicine, University College Dublin, Belfield, Dublin 4, Ireland.
Background: Inflammation and innate immune activation are associated with chronic HIV infection, despite effective treatment. Although gut microbiota alterations are linked to systemic inflammation, the relationships between the gut microbiome, inflammation and HIV remain unclear.
Methods: The UPBEAT-CAD sub-study, examining cardiovascular disease (CVD) risk in HIV, enrolled participants matched on HIV status and traditional CVD risk factors.
Int J Biol Macromol
January 2025
College of Chemistry & Pharmacy, Northwest A&F University, Yangling, Shaanxi 712100, PR China. Electronic address:
Multidrug resistance (MDR) has become a major challenge in tumor chemotherapy, primarily associated with the overexpression of P-glycoprotein (P-gp). Inhibiting P-gp expression and function through redox dyshomeostasis has shown great potential for reversing MDR. Here, a nanometer system of copper-based metal-organic framework (HA-CuMOF@DOX) modified with hyaluronic acid (HA) was constructed to overcome MDR via two-way regulation of redox homeostasis under hypoxia.
View Article and Find Full Text PDFCell Commun Signal
January 2025
Department of Life Sciences, Institute of Genome Sciences, National Yang Ming Chiao Tung University, 155 Li-Nong Street, Section 2, Beitou, Taipei, 112, Taiwan.
Background: TGF-β1 is the most abundant cytokine in bone, in which it serves as a vital factor to interdict adipogenesis and osteogenesis of bone marrow-derived mesenchymal stem cells (BM-MSCs). However, how TGF-β1 concurrently manipulates differentiation into these two distinct lineages remains elusive.
Methods: Treatments with ligands or inhibitors followed by biochemical characterization, reporter assay, quantitative PCR and induced differentiation were applied to MSC line or primary BM-MSCs for signaling dissection.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!