Shaped focal plane detectors for particle concentration and mean size observations.

Opt Express

Sequoia Scientific, Inc., 2700 Richards Road, Bellevue, WA 98005, USA.

Published: December 2009

We describe a method of designing shaped focal plane detectors for achieving a range of objectives in measurement of particles suspended in a fluid. These detectors can be designed to measure the total concentration in a wide size range (e.g. 200:1) or concentration in a size sub-range (e.g. 63

Download full-text PDF

Source
http://dx.doi.org/10.1364/OE.17.023066DOI Listing

Publication Analysis

Top Keywords

shaped focal
8
focal plane
8
plane detectors
8
concentration size
8
detectors particle
4
particle concentration
4
size observations
4
observations describe
4
describe method
4
method designing
4

Similar Publications

Finnish North Karelia is a region with a rich cultural history of ethnomedicinal plant use, shaped by centuries of interactions among various ethnic groups. This study identified both similarities and divergences between local Finns, Karelians war refugees, and individuals of mixed origin compared to historical records. Based on 67 semi-structured interviews, we documented the use of 43 medicinal plant taxa from 25 families, of which 31 remain in use.

View Article and Find Full Text PDF

This paper deals with a "digital twin" (DT) approach for processing, reprocessing, and scrapping (P/R/S) technology running on a modular production system (MPS) assisted by a mobile cyber-physical robotic system (MCPRS). The main hardware architecture consists of four line-shaped workstations (WSs), a wheeled mobile robot (WMR) equipped with a robotic manipulator (RM) and a mobile visual servoing system (MVSS) mounted on the end effector. The system architecture integrates a hierarchical control system where each of the four WSs, in the MPS, is controlled by a Programable Logic Controller (PLC), all connected via Profibus DP to a central PLC.

View Article and Find Full Text PDF

A Feature-Enhanced Small Object Detection Algorithm Based on Attention Mechanism.

Sensors (Basel)

January 2025

School of Artificial Intelligence and Computer Science, Jiangnan University, Wuxi 214122, China.

With the rapid development of AI algorithms and computational power, object recognition based on deep learning frameworks has become a major research direction in computer vision. UAVs equipped with object detection systems are increasingly used in fields like smart transportation, disaster warning, and emergency rescue. However, due to factors such as the environment, lighting, altitude, and angle, UAV images face challenges like small object sizes, high object density, and significant background interference, making object detection tasks difficult.

View Article and Find Full Text PDF

The morphological type of the acromion may play a role in the etiopathogenesis of various pathologies, such as shoulder impingement syndrome and rotator cuff disorders. Therefore, it is important to determine the acromion's morphological types accurately and quickly. In this study, it was aimed to detect the acromion shape, which is one of the etiological causes of chronic shoulder disorders that may cause a decrease in work capacity and quality of life, on shoulder MR images by developing a new model for image retrieval in Content-Based Image Retrieval (CBIR) systems.

View Article and Find Full Text PDF

In response to the intensifying competition in the mold market and the increasingly stringent specifications of die forgings, the existing 55NiCrMoV7 (MES 1 steel) material can no longer meet the elevated demands of customers. Consequently, this study systematically optimizes the alloy composition of MES 1 steel by precisely adjusting the molybdenum (Mo) and vanadium (V) contents. The primary objective is to significantly enhance the microstructure and thermal-mechanical fatigue performance of the steel, thereby developing a high-performance, long-life hot working die steel designated as MES 2 steel.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!