Aims: Cystathionine gamma-lyase (CSE)-derived H2S plays an important role in regulating cell growth. Lack of CSE expression results in development of hypertension. The current study compared proliferation of smooth muscle cells derived from CSE gene knockout mice (SMCs-KO) with that of wild-type mice (SMCs-WT).

Methods And Results: Cell proliferation was assessed by bromodeoxyuridine incorporation. Gene expression was analysed by western blotting, real-time PCR, and microarray analysis. Enhanced cell proliferation was detected in SMCs-KO and in the media of the aorta from CSE KO mice. SMCs-KO underwent significantly more apoptosis than SMCs-WT when treated with exogenous H2S (100 microM). CSE KO mice showed much lower level of phosphorylated extracellular signal-regulated kinase (ERK1/2) in mesentery arteries compared with those of WT mice, and exogenous H2S induced more phosphorylation of ERK1/2 in SMCs-KO compared with that in SMCs-WT. Decreased p21(Cip/WAF-1) but increased cyclin D1 expression was observed in isolated SMCs and vascular tissues from CSE KO mice, and exogenous H2S caused more increase in p21(Cip/WAF-1) expression and more decrease in cyclin D1 expression in SMCs-KO than in SMCs-WT. The transcriptional expression of calcitonin receptor-like, intergrin beta 1, and heparin-binding epidermal growth factor-like growth factor was also significantly increased in the aorta of CSE KO mice.

Conclusion: SMCs-KO display an increased proliferation rate in vitro and in vivo, and these cells are more susceptible to apoptosis induced by exogenous H2S at physiologically relevant concentrations. These cellular effects of H2S are mediated by phosphorylation of ERK1/2 and altered expression of cyclin D1 and p21(Cip/WAF-1).

Download full-text PDF

Source
http://dx.doi.org/10.1093/cvr/cvp420DOI Listing

Publication Analysis

Top Keywords

exogenous h2s
16
cse mice
12
cystathionine gamma-lyase
8
smooth muscle
8
muscle cells
8
mice smcs-ko
8
cell proliferation
8
aorta cse
8
mice exogenous
8
phosphorylation erk1/2
8

Similar Publications

Cadmium (Cd), as one of the most toxic nonessential elements, severely prohibits plant growth and development. Hydrogen sulfide (HS) and methyl jasmonate (MeJA) play essential roles in plant response to abiotic stress. However, the potential mechanism of HS and MeJA in alleviating Cd stress in plants remains unclear.

View Article and Find Full Text PDF

Hydrogen sulfide mediates the interaction between C. elegans and Actinobacteria from its natural microbial environment.

Cell Rep

January 2025

Department of Molecular Biology, Massachusetts General Hospital, Boston, MA 02114, USA; Department of Genetics, Harvard Medical School, Boston, MA 02115, USA. Electronic address:

Caenorhabditis elegans proliferates poorly in the presence of abundant Actinobacteria from its natural ecology, but it is unknown why. Here, we show how perturbed levels of hydrogen sulfide modulate the growth rate of both C. elegans and Actinobacteria.

View Article and Find Full Text PDF

Hydrogen sulfide-mediated inhibition of ROCK exerts a vasoprotective effecton ischemic brain injury.

Am J Physiol Cell Physiol

December 2024

Department of Pharmacology, School of Basic Medical Sciences, Anhui Medical University, Hefei, China.

As a gas molecule, hydrogen sulfide (HS) exerts neuroprotective effects. Despite its recognized importance, there remains a need for a deeper understanding of HS's impact on vascular smooth muscle cells and its role in ischemic brain injury. This study employs encompassing cultured primary cerebral vascular smooth muscle cells, oxygen-glucose deprivation/reoxygenation model, in vitro vascular tone assessments, in vivo middle cerebral artery occlusion and reperfusion experimentation in male rats, and the utilization of ROCK knockout, to unravel the intricate relationship between H2S and cerebrovascular diastolic function.

View Article and Find Full Text PDF

Functional interactions among H2O2, NO, H2S, and melatonin in the physiology, metabolism, and quality of horticultural Solanaceae.

J Exp Bot

December 2024

Group of Antioxidants, Free Radicals and Nitric Oxide in Biotechnology, Food and Agriculture, Department of Biochemistry, Cell and Molecular Biology of Plants, Estación Experimental del Zaidín, Spanish National Research Council (CSIC), Granada, Spain.

Cellular signaling is a key component of both intra- and intercellular communication, playing a crucial role in the development of higher plants as well as in their responses to environmental conditions of both abiotic and biotic origin. In recent decades, molecules such as hydrogen peroxide (H2O2), nitric oxide (NO), hydrogen sulfide (H2S), and melatonin have gained significant relevance in plant physiology and biochemistry due to their signaling functions and their interactions, forming a comprehensive cellular communication network. The Solanaceae family of plants includes a group of horticultural crops of great global importance, for instance, tomatoes, eggplants, and peppers, which are of major agroeconomic significance due to their widespread cultivation and consumption.

View Article and Find Full Text PDF

The alterations in bladder function are associated with aging. Hydrogen sulfide (H2S) is a gaseous neurotransmitter that is synthesized in the urinary bladder and is suggested to regulate bladder smooth muscle tone. The effects of age and urothelium on the L-cysteine/H2S-induced relaxant responses were investigated in young (3-4 months) and aged (23-24 months) mice.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!