Imaging a fast maneuvering target has been an active research area in past decades. Usually, an array antenna with multiple elements is implemented to avoid the motion compensations involved in the inverse synthetic aperture radar (ISAR) imaging. Nevertheless, there is a price dilemma due to the high level of hardware complexity compared to complex algorithm implemented in the ISAR imaging system with only one antenna. In this paper, a wideband multiple-input multiple-output (MIMO) radar system with two distributed arrays is proposed to reduce the hardware complexity of the system. Furthermore, the system model, the equivalent array production method and the imaging procedure are presented. As compared with the classical real aperture radar (RAR) imaging system, there is a very important contribution in our method that the lower hardware complexity can be involved in the imaging system since many additive virtual array elements can be obtained. Numerical simulations are provided for testing our system and imaging method.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1109/TIP.2009.2039623 | DOI Listing |
J Orthop
August 2025
University of Turin, Centro Traumatologico Ortopedico (CTO), Department of Orthopaedic Surgery, Turin, Italy.
Introduction: Sacroiliac joint (SIJ) dislocations, particularly pure SIJ dislocations without associated fractures, represent a rare and complex subset of pelvic ring injuries. Given the intricate pelvic anatomy and the need to achieve both stability and functional recovery, the optimal surgical management for these injuries remains a topic of debate. This systematic review aims to evaluate the various surgical techniques employed in treating this rare and challenging injury and assess associated clinical outcomes and complications.
View Article and Find Full Text PDFJ Clin Orthop Trauma
March 2025
Department of Orthopaedic Surgery, Mercy St. Vincent Medical Center, 2213 Cherry St., Toledo, OH, 43608, USA.
Background: Gravid females with pelvic fractures are rarely encountered by the orthopaedic trauma surgeon. The initial injury can be detrimental to the pregnant patient, but an unnecessary "second hit" from surgery could also contribute to the outcome of the fetus. Understanding the surgical risks for this unique patient population requires knowledge about the negative effects of anesthesia, surgical exposures, and radiation.
View Article and Find Full Text PDFRecent Pat Nanotechnol
January 2025
Bernoulli Institute for Mathematics, Computer Science and Artificial Intelligence, University of Groningen, Nijenborgh 9, 9747 AG Groningen, The Netherlands.
The increase in computational power demand led by the development of Artificial Intelligence is rapidly becoming unsustainable. New paradigms of computation, which potentially differ from digital computation, together with novel hardware architecture and devices, are anticipated to reduce the exorbitant energy demand for data-processing tasks. Memristive systems with resistive switching behavior are under intense research, given their prominent role in the fabrication of memory devices that promise the desired hardware revolution in our intensive data-driven era.
View Article and Find Full Text PDFNat Commun
January 2025
School of Future Technology, University of Chinese Academy of Sciences, 100190, Beijing, PR China.
In bioneuronal systems, the synergistic interaction between mechanosensitive piezo channels and neuronal synapses can convert and transmit pressure signals into complex temporal plastic pulses with excitatory and inhibitory features. However, existing artificial tactile neuromorphic systems struggle to replicate the elaborate temporal plasticity observed between excitatory and inhibitory features in biological systems, which is critical for the biomimetic processing and memorizing of tactile information. Here we demonstrate a mechano-gated iontronic piezomemristor with programmable temporal-tactile plasticity.
View Article and Find Full Text PDFNat Commun
January 2025
Beijing Advanced Innovation Center for Integrated Circuits, School of Integrated Circuits, Peking University, Beijing, China.
Compute-in-memory based on resistive random-access memory has emerged as a promising technology for accelerating neural networks on edge devices. It can reduce frequent data transfers and improve energy efficiency. However, the nonvolatile nature of resistive memory raises concerns that stored weights can be easily extracted during computation.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!