Combining improved injector, gas line and valve-driving modules, a GC equipped with FID and ECD, could simultaneously measure CH4, CO2 and N2O in an air sample within 4 min. Test results showed that the system has high sensitivity, resolution and precision; the linear response range of the system meets the requirement of in situ flux measurements. Thus, the system is suitable for monitoring fluxes of main greenhouse gases in terrestrial ecosystem since it is easy to use, efficacious, stable and reliable to collect data.

Download full-text PDF

Source

Publication Analysis

Top Keywords

improved gas
4
gas chromatography
4
chromatography rapid
4
rapid measurement
4
measurement co2
4
co2 ch4
4
ch4 n2o
4
n2o combining
4
combining improved
4
improved injector
4

Similar Publications

Water splitting by an electrochemical method to generate hydrogen gas is an economic and green approach to resolve the looming energy and environmental crisis. Designing a composite electrocatalyst having integrated multichannel charge separation, robust stability, and low-cost facile scalability could be considered to address the issue of electrochemical hydrogen evolution. Herein, we report a superhydrophilic, noble-metal-free bimetallic nanostructure TiO/NiP coated on graphitic polyacrylonitrile carbon fibers (g-C/TiO/NiP) using a facile hydrothermal method followed by phosphorylation.

View Article and Find Full Text PDF

Hydrate-based carbon capture and storage (HBCS) is a sustainable and promising approach to combating global warming by utilizing water, which is a ubiquitous resource. Here, we report a comprehensive study of CO hydrate formation in dry water (DW), a water-in-air dispersion confined in silica particles, for improving the kinetics of hydrate growth. Utilizing a combination of a home-built high-pressure reactor, in situ Raman spectroscopy, and powder X-ray diffraction (PXRD), we elucidate the crystal structure, growth dynamics, and morphology of CO hydrates formed in DW, with and without the kinetic hydrate promoter, l-tryptophan.

View Article and Find Full Text PDF

Biomarkers.

Alzheimers Dement

December 2024

School of Public Health and the Second Affiliated Hospital of School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China.

Background: Tear samples were low-invasive to access and may reflect changes in the brain. We performed an exploratory proteomic analysis using tear samples to identify proteomic signature and potential pathways that may be associated with mild cognitive impairment (MCI) and dementia.

Method: We performed a matched case-control study using tear samples collected from community-dwelling older adults, comprising 13 dementia, as well as 34 MCI and 34 age-, sex-, educational-matched normal cognition (NC) controls (age: 73.

View Article and Find Full Text PDF

Background: Postoperative delirium (POD) is characterized by fluctuating attention after surgery and is associated with increased risk of developing Alzheimer's Disease (AD). While the neurophysiological changes that underlie POD and increased risk of AD are unclear, recent data has raised the possibility that an exaggerated brain response to anesthetics may be a biomarker for POD risk and preclinical AD-like pathology. Thus, we examined whether anesthetic-dose-adjusted intraoperative brain activity is associated with POD or preoperative brain vulnerabilities (preclinical AD-like pathology, preoperative inattention) that may contribute to risk of POD (and later AD).

View Article and Find Full Text PDF

Flotation is an interfacial process involving gas, liquid, and solid phases, where polar ionic promoters significantly influence both gas-liquid and solid-liquid interfaces during low-rank coal (LRC) flotation. This study examines how the structures of hydrophilic groups in cation-anion mixed promoters affect the interfacial flotation performance of LRC pulp using flotation tests, surface tension tests, wetting heat tests, and molecular dynamics simulations. Results indicate that cation-anion mixed promoters enhance the LRC floatability to varying degrees.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!