Perkinsus marinus is a facultative intracellular parasite that causes "Dermo" disease in the eastern oyster Crassostrea virginica. Although hemocytes from healthy oysters rapidly phagocytize P. marinus trophozoites, they fail to efficiently kill them. Instead, trophozoites survive and proliferate, eventually overwhelming the host. Because Chesapeake Bay oyster populations have been reduced to unprecedented levels, the introduction of the Suminoe oyster, Crassostrea ariakensis (synonymous C. rivularis), has recently been proposed. Although this species is refractory to developing Dermo disease, it can be infected by Perkinsus spp. and, thus, the mechanistic basis of its disease resistance remains intriguing. To examine whether the resistance to develop Dermo is due to a high capacity of C ariakensis hemocytes to kill internalized P. marinus, we developed an in vitro assay to compare intracellular survival and proliferation of P. marinus in C. virginica and C ariakensis hemocytes. Our results revealed that P. marinus cultured trophozoites have a similar capacity for in vitro survival within hemocytes from both oyster species, suggesting that the resistance of C. ariakensis to develop Dermo disease is most likely due to reduced parasite pathogenicity for the latter oyster species, rather than to infectivity. Together with the currently available P. marinus genome, EST sequences, and the transfection methodology we recently developed, this assay should significantly contribute to a rigorous identification of the P. marinus genes responsible for its intrahemocytic survival.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1645/GE-1864.1 | DOI Listing |
J Environ Manage
January 2025
Virginia Institute of Marine Science, William & Mary, P.O. Box 1346, Gloucester Point, VA, 23062, USA.
Coastal ecosystems are degraded worldwide and oyster reefs are among the most threatened coastal habitats. Oysters are a critical ecosystem engineer and valuable fishery species, thus effective management strategies must balance tradeoffs between protecting reef ecosystems and continued human use. Management practices for oysters commonly incorporate shell replenishment (provisioning hard substrates to increase reef relief) and spatial management (rotational harvest areas or sanctuaries); however, the impact of these practices on reef dynamics and fisheries outcomes are poorly understood, particularly on harvested reefs.
View Article and Find Full Text PDFPathogens
December 2024
Department of Levante Ligure, Istituto Zooprofilattico Sperimentale del Piemonte, Liguria e Valle d'Aosta, Via degli Stagnoni 96, 19100 La Spezia, Italy.
Bivalve molluscs are filter-feeding organisms, capable of concentrating pathogenic microorganisms from the surrounding environment, thus contributing to the spread of viral pathogens, which they can transmit to humans, especially if eaten raw or undercooked. Although norovirus (NoV) and the hepatitis A virus (HAV) are considered the most common causes of foodborne infections, in recent years, other viruses with a zoonotic potential have been identified in shellfish, such as the hepatitis E virus (HEV), astrovirus (AsV), and aichi virus (AiV). The aim of the study was to investigate the presence of classical and emerging pathogenic enteric viruses in oysters () and mussels () from a mollusc farming area in the northwest of Italy, between April 2022 and March 2023.
View Article and Find Full Text PDFDev Reprod
December 2024
Department of Fisheries Biology, Pukyong National University, Busan 48513, Korea.
While Pacific oysters are important commercial aquaculture species worldwide, the effect of hormonal regulation and environmental conditions on growth and taste profile have not been fully known. Insulin-like growth factor (IGF) systems are known to play a major role in regulating neuroendocrine functions across various physiological processes and are particularly involved in growth. IGFs expression also is directly related to the nutritional status of vertebrates, however, full mechanism has not been clearly identified in bivalves.
View Article and Find Full Text PDFFront Microbiol
January 2025
Department of Agriculture, Food and Resource Sciences, University of Maryland Eastern Shore, Princess Anne, MD, United States.
Metagenomic sequencing is increasingly being employed to understand the assemblage and dynamics of the oyster microbiome. Specimen collection and processing steps can impact the resultant microbiome composition and introduce bias. To investigate this systematically, a total of 54 farmed oysters were collected from Chesapeake Bay between May and September 2019.
View Article and Find Full Text PDFMol Biol Rep
January 2025
College of Life Sciences, Liaoning Normal University, Dalian, Liaoning, 116029, China.
Background: High temperature is a critical environmental factor leading to mass mortality in oyster aquaculture in China. Recent advancements highlight the physiological regulation function of γ-aminobutyric acid (GABA) in the adaptation of environmental stress.
Methods And Results: This study examined the physiological responses of the Pacific oyster (Crassostrea gigas) upon high temperature exposure, focusing on the histopathological changes in gill, the GABA concentration, the mRNA expression and activities of apoptosis-related genes.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!