Methotrexate delivery via folate targeted dendrimer-based nanotherapeutic platform.

Wiley Interdiscip Rev Nanomed Nanobiotechnol

Michigan Nanotechnology Institute for Medicine and Biological Sciences, University of Michigan, Ann Arbor, MI 48109-0533, USA.

Published: March 2010

This paper provides a synopsis of the advancements made in advancing a dendrimer-based nanomedicine towards human clinical trials by the Michigan Nanotechnology Institute for Medicine and Biological Sciences. A brief description of the synthesis and characterization of a targeted multifunctional therapeutic will demonstrate the simple yet delicate task of producing novel chemotherapeutic agents. The results obtained from in vitro and in vivo studies not only authenticate the potential of using nanoparticles to target therapeutics but also provide valuable insight towards the future directions of this technology. A fundamental, cross-disciplinary collaboration was necessary to achieve the synthesis and testing of this technology, and was the keystone to establishing this innovative invention. Throughout this paper, we will stress that the unique collaboration that facilitated the evolution of this technology is vital to the success of future developments in nanomedicine.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2944777PMC
http://dx.doi.org/10.1002/wnan.37DOI Listing

Publication Analysis

Top Keywords

methotrexate delivery
4
delivery folate
4
folate targeted
4
targeted dendrimer-based
4
dendrimer-based nanotherapeutic
4
nanotherapeutic platform
4
platform paper
4
paper synopsis
4
synopsis advancements
4
advancements advancing
4

Similar Publications

This study aims to synthesize a new localized drug delivery system of bioglass, polyvinyl alcohol (PVA), cellulose (CNC), and sodium alginate (SA) beads as a carrier for methotrexate (MTX) drugs for the treatment of osteosarcoma. Methotrexate /Bioglass-loaded Polyvinyl/Cellulose/Sodium alginate biocomposite beads were prepared via the dropwise method with different concentrations of (65%SiO-30%CaO- 5%PO) bioglass. Samples were named B0, S0, S1, S2, and S3, respectively.

View Article and Find Full Text PDF

Enhancement of Transdermal Drug Delivery: Integrating Microneedles with Biodegradable Microparticles.

Mol Pharm

January 2025

Department of Pharmaceutical Sciences, College of Pharmacy, Mercer University, Atlanta, Georgia 30341, United States.

This investigation aimed to enhance transdermal methotrexate delivery through human skin by employing Dr. Pen microneedles and poly(d,l-lactide--glycolide) acid microparticles formulated from eight polymer grades (Expansorb DLG 95-4A, DLG 75-5A, DLG 50-2A, DLG 50-5A, DLG 50-8A, DLG 50-6P, DLG 50-7P, and DLL 10-15A). A comprehensive characterization of the microparticles was performed, encompassing various parameters such as size, charge, morphology, microencapsulation efficiency, yield, release kinetics, and chemical composition.

View Article and Find Full Text PDF

Methotrexate (MTX) is classified as an antimetabolite. It's commonly used to treat lung cancer. MTX is an immunosuppressant following the above-mentioned mechanism of action due to its poor selectivity.

View Article and Find Full Text PDF

Background: This study aimed to investigate the risk factors related to the failure of initial combined local methotrexate (MTX) treatment and minimally invasive surgery for late cesarean scar pregnancy (CSP).

Methods: This retrospective case-control study was conducted between January 2016 and December 2023, involving patients with late CSP (≥ 8 weeks) who received local MTX injection combined with either hysteroscopic or laparoscopic surgery. Cesarean scar pregnancy was classified as type I, II, or III based on the direction of growth of the gestational sac and the residual myometrial thickness as assessed by ultrasound.

View Article and Find Full Text PDF

The simultaneous administration of multiple drugs within identical nanocarriers to cancer cells or tissues can result in the effective action of drugs at reduced concentrations. In this investigation, PAMAM dendrimers (G4-PAMAM) were employed to link with methotrexate (MTX) using DCC/NHS chemistry and followed by the entrapment of curcumin (Cur) within it. The establishment of covalent bonds between MTX and the PAMAM dendrimer led to PAMAM-MTX interaction, verified and described through FT-IR.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!