The amorphization of indomethacin was induced by milling. The mass fraction of the amorphous phase in the drug milled for various time intervals was determined with differential scanning calorimetry (DSC). Because the surface fraction amorphized by milling can be much higher than the mass fraction, which can have a large impact on the powder properties, a method for quantification of surface fraction amorphized by milling using inverse gas chromatography (IGC) was developed. A calibration curve was constructed by mixing completely amorphous indomethacin (obtained after milling for 120 min) with various amounts of the initial crystalline sample. Linear part of the curve was then used to quantify the surface amorphous content of samples milled for different time intervals. Surface and mass amorphization kinetics were determined and fitted to a first-order model. It was found that the surface amorphization rate is an order of magnitude higher than the mass amorphization rate. Results confirmed that IGC is a sensitive method for detection and quantification of the fraction of amorphous surface of milled indomethacin powder. If suitably combined with other techniques, this method represents a relatively general approach for the localization and quantification of the surface amorphous fraction in crystalline substances that transform into amorphous ones upon intensive milling.

Download full-text PDF

Source
http://dx.doi.org/10.1002/jps.21986DOI Listing

Publication Analysis

Top Keywords

mass fraction
8
fraction amorphous
8
milled time
8
time intervals
8
surface fraction
8
fraction amorphized
8
amorphized milling
8
higher mass
8
quantification surface
8
surface amorphous
8

Similar Publications

This study was intended to provide a novel process that fills a knowledge gap in relation to the enhancement of pulses utilization. The primary goal was to develop an experimental framework for using a high-pressure supercritical fluid extruder (SCFX) as a continuous bioreactor to produce off-flavor reduced and functionally superior pulse flours and protein concentrates in a single step. The current study focused on using SCFX processing to remove off-flavor from pulse flour and protein concentrates, enhancing the quality, acceptability, and marketability of pulse-based products.

View Article and Find Full Text PDF

Objective: Childhood overweight and obesity has been a major global problem for a long time, with a steadily increasing prevalence of obesity and a growing number of cases of serious health complications associated with childhood obesity. The main objective of the study is to assess the prevalence of overweight and obesity in boys and girls before the COVID-19 pandemic in the Czech Republic.

Methods: Body height, weight, BMI, and body composition (fat free mass, skeletal muscle mass, body fat, visceral fat area) were assessed in a cohort of 4,475 subjects (2,180 boys and 2,295 girls) aged 6-15 years.

View Article and Find Full Text PDF

Carving Metal-Organic-Framework Glass Based Solid-State Electrolyte Via a Top-Down Strategy for Lithium-Metal Battery.

Angew Chem Int Ed Engl

January 2025

KU Leuven, Materials engineering, Kasteelpark Arenberg 44 bus 2450, 3001 LEUVEN Belgium, LEUVEN, BELGIUM.

Traditional polymer solid electrolytes (PSEs) suffer from low Li conductivity, poor kinetics and safety concerns. Here, we present a novel porous MOF glass gelled polymer electrolyte (PMG-GPE) prepared via a top-down strategy, which features a unique three-dimensional interconnected graded-aperture structure for efficient ion transport. Comprehensive analyses, including time-of-flight secondary ion mass spectrometry (TOF-SIMS), Solid-state 7Li magic-angle-spinning nuclear magnetic resonance (MAS-NMR), Molecular Dynamics (MD) simulations, and electrochemical tests, quantify the pore structures, revealing their relationship with ion conductivity that increases and then decreases as macropore proportion rises.

View Article and Find Full Text PDF

4-O-Methylglucaric Acid Production from Xylan with Uronic Acid Oxidase and Comparison to Glucaric Acid from Glucose.

Chembiochem

January 2025

Department of Chemical Engineering and Applied Chemistry, University of Toronto, 200 College Street, Toronto, Ontario, M5S 3E5, Canada.

This study describes an enzymatic pathway to produce high purity 4-O-methylglucaric acid from xylan, an underutilized fraction of lignocellulosic biomass. Beechwood xylan was enzymatically hydrolysed using a commercial xylanase and an α-glucuronidase from Amphibacillus xylanus to form 4-O-methylglucuronic acid, which was then purified by anion exchange chromatography and subsequently oxidized to 4-O-methylglucaric acid using a recombinantly produced uronic acid oxidase from Citrus sinensis. Enzymatic oxidation with uronic acid oxidase afforded 95 % yield in 72 hours which is considerably higher than yields previously achieved using a glucooligosaccharide oxidase from Sarocladium strictum.

View Article and Find Full Text PDF

A significant limitation of imaged capillary electric focusing (icIEF) is the inability to identify and characterize specific species in the electropherogram. This has led to the development of complementary ion-exchange chromatography (IEX)-based methods that are amenable to either fraction collection and subsequent characterization or online IEX coupled to mass spectrometry. To overcome this limitation while maintaining the use of icIEF, novel approaches, including an icIEF separation and fractionation technology (MauriceFlex, ProteinSimple), have been developed.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!