Asf1 can promote trimethylation of H3 K36 by Set2.

Mol Cell Biol

Department of Biochemistry, University of Alberta, MSB 5-76, Edmonton, Alberta, Canada T6G 2H7.

Published: March 2010

Asf1 is a conserved histone H3/H4 chaperone that can assemble and disassemble nucleosomes and promote histone acetylation. Set2 is an H3 K36 methyltransferase. The functions of these proteins intersect in the context of transcription elongation by RNA polymerase II: both contribute to the establishment of repressive chromatin structures that inhibit spurious intragenic transcription. Here we characterize further interactions between budding yeast (Saccharomyces cerevisiae) Asf1 and Set2 using assays of intragenic transcription, H3/H4 posttranslational modification, coding region cross-linking of Asf1 and Set2, and cooccurrence of Asf1 and Set2 in protein complexes. We find that at some genes Asf1 and Set2 control chromatin metabolism as components of separate pathways. However, the existence of a low-abundance complex containing both proteins suggests that Asf1 and Set2 can more directly collaborate in chromatin regulation. Consistent with this possibility, we show that Asf1 stimulates Set2 occupancy of the coding region of a highly transcribed gene by a mechanism that depends on Asf1 binding to H3/H4. This function of Asf1 promotes the switch from di- to trimethylation of H3 K36 at that gene. These results support the view that Set2 function in chromatin metabolism can intimately involve histone chaperone Asf1.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2820888PMC
http://dx.doi.org/10.1128/MCB.01229-09DOI Listing

Publication Analysis

Top Keywords

asf1 set2
20
asf1
11
set2
9
trimethylation k36
8
intragenic transcription
8
coding region
8
chromatin metabolism
8
asf1 promote
4
promote trimethylation
4
k36 set2
4

Similar Publications

Set2-mediated methylation of histone H3 at Lys 36 (H3K36me) is a co-transcriptional event that is necessary for the activation of the Rpd3S histone deacetylase complex, thereby maintaining the coding region of genes in a hypoacetylated state. In the absence of Set2, H3K36 or Rpd3S acetylated histones accumulate on open reading frames (ORFs), leading to transcription initiation from cryptic promoters within ORFs. Although the co-transcriptional deacetylation pathway is well characterized, the factors responsible for acetylation are as yet unknown.

View Article and Find Full Text PDF

Asf1 can promote trimethylation of H3 K36 by Set2.

Mol Cell Biol

March 2010

Department of Biochemistry, University of Alberta, MSB 5-76, Edmonton, Alberta, Canada T6G 2H7.

Asf1 is a conserved histone H3/H4 chaperone that can assemble and disassemble nucleosomes and promote histone acetylation. Set2 is an H3 K36 methyltransferase. The functions of these proteins intersect in the context of transcription elongation by RNA polymerase II: both contribute to the establishment of repressive chromatin structures that inhibit spurious intragenic transcription.

View Article and Find Full Text PDF

The eukaryotic genome forms a chromatin structure that contains repeating nucleosome structures. Nucleosome packaging is regulated by chromatin remodeling factors such as histone chaperones. The Saccharomyces cerevisiae H3/H4 histone chaperones, CAF-1 and Asf1, regulate DNA replication and chromatin assembly.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!