Electrochemical detection of vascular endothelial growth factors (VEGFs) using VEGF antibody fragments modified Au NPs/ITO electrode.

Biosens Bioelectron

Department of Materials Science & Engineering, Korea University, Seoul 136-713, Republic of Korea.

Published: March 2010

A new electrochemical technique for the detection of vascular endothelial growth factors (VEGFs) as a cancer-related biomarker is presented in this paper. Gold nanoparticles (Au NPs) were self-assembled onto an indium tin oxide (ITO) electrode to prepare a modified sandwich type electrochemical immunoassay platform. VEGF antibodies were cleaved into two half-fragments by 2-mercaptoethylamine-HCl (2-MEA) and the fragments were immobilized onto the Au NP substrates by their thiol groups. Through this strategy, randomly oriented attachment of antibodies was prevented which frequently occurs in a general use of whole antibody and reduces the number of available sites for the attachment of target molecules. VEGF target molecules were applied to the immunoelectrodes and they combined with the antibody fragments covering the Au NP electrode, forming antigen-antibody complexes. Then, ferrocene-tagged antibodies, which release electrons under a proper applied potential, were added to the system and they combined with the VEGF molecules pre-attached to the antibody fragments. The redox current of ferrocene measured by the differential pulse voltammetry (DPV) increased almost linearly from 1.27 x 10(-4) to 4.17 x 10(-4)A according to the increase in the concentration of the VEGF target molecules from 100 to 600 pg/ml. The measured current values represent the concentration of the VEGF since they are proportional to the number of ferrocene molecules which is in turn proportional to the concentration of VEGF target molecules. Using this modified sandwich immunoassay with the Au NP/ITO electrode, VEGFs as low as 100 pg/ml were detected with high specificity.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.bios.2009.12.015DOI Listing

Publication Analysis

Top Keywords

target molecules
16
antibody fragments
12
vegf target
12
concentration vegf
12
detection vascular
8
vascular endothelial
8
endothelial growth
8
growth factors
8
factors vegfs
8
modified sandwich
8

Similar Publications

The current study was deployed to evaluate the role of metastasis-associated lung adenocarcinoma transcript 1 (MALAT1) and miR-155, along with the inflammatory markers, TNFα and IL-6, and the adhesion molecule, cluster of differentiation 106 (CD106), in Behçet's disease (BD) pathogenesis. The study also assessed MALAT1/miR-155 as promising diagnostic and prognostic biomarkers for BD. The current retrospective case-control study included 74 Egyptian BD patients and 50 age and sex-matched controls.

View Article and Find Full Text PDF

Gymnostachyum febrifugum, a less-known ethnomedicinal plant from the Western Ghats of India, is used to treat various diseases and serves as an antioxidant and antibacterial herb. The present study aims to profile the cytotoxic phytochemicals in G. febrifugum roots using GC-MS/MS, in vitro confirmation of cytotoxic potential against breast cancer and an in silico study to understand the mechanism of action.

View Article and Find Full Text PDF

Improving Molecular Design with Direct Inverse Analysis of QSAR/QSPR Model.

Mol Inform

January 2025

Department of Applied Chemistry, School of Science and Technology, Meiji University, 1-1-1 Higashi-Mita, Tama-ku, Kawasaki, Kanagawa 214-8571, Japan.

Recent advances in machine learning have significantly impacted molecular design, notably the molecular generation method combining the chemical variational autoencoder (VAE) with Gaussian mixture regression (GMR). In this method, a mathematical model is constructed with X as the latent variable of the molecule and Y as the target properties and activities. Through direct inverse analysis of this model, it is possible to generate molecules with the desired target properties.

View Article and Find Full Text PDF

Glioblastoma (GBM), the most malignant brain tumor with high prevalence, remains highly resistant to the existing immunotherapies due to the significant immunosuppression within tumor microenvironment (TME), predominantly manipulated by M2-phenotypic tumor-associated macrophages (M2-TAMs). Here in this work, an M2-TAMs targeted nano-reprogrammers, MG5-S-IMDQ, is established by decorating the mannose molecule as the targeting moiety as well as the toll-like receptor (TLR) 7/8 agonist, imidazoquinoline (IMDQ) on the dendrimeric nanoscaffold. MG5-S-IMDQ demonstrated an excellent capacity of penetrating the blood-brain barrier (BBB) as well as selectively targeting M2-TAMs in the GBM microenvironment, leading to a phenotype transformation and function restoration of TAMs shown as heightened phagocytic activity toward tumor cells, enhanced cytotoxic effects, and improved tumor antigen cross-presentation capability.

View Article and Find Full Text PDF

The inhibition of acetylcholinesterase (AChE), an enzyme responsible for the inactivation and decrease in acetylcholine in the cholinergic pathway, has been considered an attractive target for small-molecule drug discovery in Alzheimer's disease (AD) therapy. In the present study, a series of TZD derivatives were designed, synthesized, and studied for drug likeness, blood-brain barrier (BBB) permeability, and adsorption, distribution, metabolism, excretion, and toxicity (ADMET). Additionally, docking studies of the designed compounds were performed on AChE.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!