Ion binding models such as the nonideal competitive adsorption-Donnan model (NICA-Donnan) and model VI successfully describe laboratory data of proton and metal binding to purified humic substances (HS). In this study model performance was tested in more complex natural systems. The speciation predicted with the NICA-Donnan model and the associated uncertainty were compared with independent measurements in soil solution extracts, including the free metal ion activity and fulvic (FA) and humic acid (HA) fractions of dissolved organic matter (DOM). Potentially important sources of uncertainty are the DOM composition and the variation in binding properties of HS. HS fractions of DOM in soil solution extracts varied between 14 and 63% and consisted mainly of FA. Moreover, binding parameters optimized for individual FA samples show substantial variation. Monte Carlo simulations show that uncertainties in predicted metal speciation, for metals with a high affinity for FA (Cu, Pb), are largely due to the natural variation in binding properties (i.e., the affinity) of FA. Predictions for metals with a lower affinity (Cd) are more prone to uncertainties in the fraction FA in DOM and the maximum site density (i.e., the capacity) of the FA. Based on these findings, suggestions are provided to reduce uncertainties in model predictions.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/es902615w | DOI Listing |
J Fungi (Basel)
December 2024
Agricultural College, Yanbian University, Yanji 133002, China.
Cucumber wilt disease, caused by f. sp. (FOC), is a major threat to cucumber production, especially in greenhouses.
View Article and Find Full Text PDFJ Allergy Clin Immunol Pract
December 2024
Swiss Institute of Allergy and Asthma Research (SIAF), University Zurich, Davos, Switzerland.
Human activities, primarily the burning of fossil fuels, widespread deforestation, soil erosion or machine-intensive farming methods, manufacturing, food processing, mining, and construction iron, cement, steel, and chemicals industry, have been the main drivers of the observed increase in Earth's average surface temperature and climate change. Rising global temperatures, extreme weather events, ecosystems disruption, agricultural impacts, water scarcity, problems in access to good quality water, food and housing, and profound environmental disruptions such as biodiversity loss and extreme pollution are expected to steeply increase the prevalence and severity of acute and chronic diseases. Its long-term effects cannot be adequately predicted or mitigated without a comprehensive understanding of the adaptive ecosystems.
View Article and Find Full Text PDFJ Environ Radioact
December 2024
Belgian Nuclear Research Centre (SCK CEN), Boeretang 200, 2400, Mol, Belgium.
A soil-vegetation-atmospheric transfer (SVAT) model for radon and its progeny is presented to improve process-level understanding of the role of forests in taking-up radionuclides from soil radon outgassing. A dynamic system of differential equations couples soil, tree (Scots pine) and atmospheric processes, treating the trees as sources, sinks and conduits between the atmosphere and the soil. The model's compartments include a dual-layer soil column undergoing hydrological and solute transport, the tree system (comprising roots, wood, litter, and foliage) and the atmosphere, with physical processes governing the transfers of water and radon products between these compartments.
View Article and Find Full Text PDFInt J Phytoremediation
December 2024
Key Laboratory of the Evaluation and Monitoring of Southwest Land Resources (Ministry of Education), Sichuan Normal University, Chengdu, China.
The combined microbial-plant remediation has increasingly been used to remediate heavy metal-contaminated soil. Some microorganisms could enhance phytoremediation efficiency by solubilizing heavy metal and improve plant growth by producing phytohormones in the heavy metal contaminated soils. In the present study, a strong cesium (Cs)-tolerant fungal strain was identified from soil microorganisms contaminated with Cs, and the enrichment conditions for Cs were optimized.
View Article and Find Full Text PDFFront Microbiol
December 2024
Environmental Pollution Research Center, University of Costa Rica, San José, Costa Rica.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!