Medial temporal atrophy is a well-established marker for Alzheimer's disease (AD). However, due to normal variation in the size of medial temporal structures and variability in how radiologists interpret images, the use of clinical reads in establishing the presence of pathological atrophy is imprecise. A limitation of studies of magnetic resonance imaging (MRI) measures in AD is diagnostic uncertainty as it can be unknown if pre- or early-symptomatic subjects go on to develop AD and most subjects do not undergo autopsy verification of the diagnosis. In persons with or at-risk for AD due to fully-penetrant autosomal dominant mutations in the PSEN1 and APP genes, the diagnosis or future development of AD can be predicted with essentially 100% accuracy. We used this predictability to assess the ability of radiologists to detect hippocampal atrophy (HA) in persons destined to develop AD. Coronal T1-weighted MRI scans of 39 persons demented from (n = 4) or at-risk for inheriting (n = 35) PSEN1 or APP mutations were independently assessed by two radiologists and the presence or absence of HA determined. Of the 39 subjects, 26 were FAD mutation carriers. Fifteen of 28 asymptomatic at-risk persons were FAD mutation carriers and four of these were rated as having atrophy for a sensitivity of 27% and a specificity of 85%. Among seven mildly affected yet non-demented subjects, atrophy was detected in three and in the four demented subjects HA was identified in two. Our results suggest that radiologists' ability to detect HA in persons in whom the diagnosis of incipient AD is certain is sub-optimal and quantitative MRI techniques or other biological markers of the disease are needed.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2864895 | PMC |
http://dx.doi.org/10.1007/s00415-009-5436-4 | DOI Listing |
Alzheimers Res Ther
January 2025
Department of Neurology, University Medical Center Rostock, 18147, Rostock, Germany.
Background: Degeneration of the basal forebrain cholinergic system is a hallmark feature shared by Alzheimer's disease (AD) and Lewy body disease (LBD) whereas hippocampus atrophy is more specifically related to AD. We aimed to investigate the relationship between basal forebrain and hippocampus atrophy, cognitive decline, and neuropathology in a large autopsy sample.
Methods: Data were obtained from the National Alzheimer's Coordinating Center (NACC).
J Neuropathol Exp Neurol
January 2025
Department of Biological Sciences, Delaware State University, Dover, DE, United States.
Trans-active response DNA-binding protein-43 (TDP-43) is the major pathological protein in motor neuron disease and TDP-43 pathology has been described in the brains of up to 50% of patients with Alzheimer disease (AD). Hippocampal sclerosis of aging (HS-A), an age-related neuropathology characterized by severe neuronal loss and gliosis in CA1 and/or subiculum, is found in ∼80% of cases that are positive for phosphorylated TDP-43. HS-A is seen as a co-pathology in cases with AD, limbic-predominant age-related TDP-43 encephalopathy neuropathologic changes (LATE-NC), and frontotemporal degeneration.
View Article and Find Full Text PDFJ Prev Alzheimers Dis
February 2025
The ADNI is detailed in Supplemental Acknowledgments.
Background: α-Synuclein (α-Syn) pathology is present in 30-50 % of Alzheimer's disease (AD) patients, and its interactions with tau proteins may further exacerbate pathological changes in AD. However, the specific role of different aggregation forms of α-Syn in the progression of AD remains unclear.
Objectives: To explore the relationship between various aggregation types of CSF α-Syn and Alzheimer's disease progression.
Ann Clin Transl Neurol
January 2025
NEUROFARBA Department, Neurosciences Section, University of Florence, Florence, Italy.
Objectives: We aim to investigate cognitive phenotype distribution and MRI correlates across pediatric-, elderly-, and adult-onset MS patients as a function of disease duration.
Methods: In this cross-sectional study, we enrolled 1262 MS patients and 238 healthy controls, with neurological and cognitive assessments. A subset of 222 MS patients and 92 controls underwent 3T-MRI scan for brain atrophy and lesion analysis.
Life (Basel)
January 2025
Department of Neurosciences, Iuliu Hațieganu University of Medicine and Pharmacy, No. 8 Victor Babeș Street, 400012 Cluj-Napoca, Romania.
Acute ischemic stroke (AIS) is frequently associated with long-term post-stroke cognitive impairment (PSCI) and dementia. While the mechanisms behind PSCI are not fully understood, the brain and cognitive reserve concepts are topics of ongoing research exploring the ability of individuals to maintain intact cognitive performance despite ischemic injuries. Brain reserve refers to the brain's structural capacity to compensate for damage, with markers like hippocampal atrophy and white matter lesions indicating reduced reserve.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!