Microscale topographical features have been known to affect cell behavior. An important target in this area is to integrate top down techniques with bottom up self-assembly to create three-dimensional (3D) patterned bioactive mimics of extracellular matrices. We report a novel approach toward this goal and demonstrate its use to study the behavior of human mesenchymal stem cells (hMSCs). By incorporating polymerizable acetylene groups in the hydrophobic segment of peptide amphiphiles (PAs), we were able to micro-pattern nanofiber gels of these bioactive materials. PAs containing the cell adhesive epitope arginine-glycine-aspartic acid-serine (RGDS) were allowed to self-assemble within microfabricated molds to create networks of either randomly oriented or aligned ~30 nm diameter nanofiber bundles that were shaped into topographical patterns containing holes, posts, or channels up to 8 μm in height and down to 5 μm in lateral dimensions. When topographical patterns contained nanofibers aligned through flow prior to gelation, the majority of hMSCs aligned in the direction of the nanofibers even in the presence of hole microtextures and more than a third of them maintained this alignment when encountering perpendicular channel microtextures. Interestingly, in topographical patterns with randomly oriented nanofibers, osteoblastic differentiation was enhanced on hole microtextures compared to all other surfaces.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2680507 | PMC |
http://dx.doi.org/10.1039/b819002j | DOI Listing |
J Neurosci
January 2025
Brainnetome Center, Institute of Automation, Chinese Academy of Sciences, Beijing 100190, China
Genetic information is involved in the gradual emergence of cortical areas since the neural tube begins to form, shaping the heterogeneous functions of neural circuits in the human brain. Informed by invasive tract-tracing measurements, the cortex exhibits marked interareal variation in connectivity profiles, revealing the heterogeneity across cortical areas. However, it remains unclear about the organizing principles possibly shared by genetics and cortical wiring to manifest the spatial heterogeneity across cortex.
View Article and Find Full Text PDFActa Biomater
January 2025
Central laboratory of Liaocheng People's Hospital, Liaocheng, Shandong, 252000, China. Electronic address:
Peripheral nerve injury (PNI) as a common clinical issue that presents significant challenges for repair. Factors such as donor site morbidity from autologous transplantation, slow recovery of long-distance nerve damage, and deficiencies in local cytokines and extracellular matrix contribute to the complexity of effective PNI treatment. It is extremely urgent to develop functional nerve guidance conduits (NGCs) as substitutes for nerve autografts.
View Article and Find Full Text PDFPLoS Negl Trop Dis
January 2025
Institute of Exact and Applied Sciences, University of New Caledonia, Nouméa, Province Sud, New Caledonia.
Background: Leptospirosis is a neglected zoonotic disease prevalent worldwide, particularly in tropical regions experiencing frequent rainfall and severe cyclones, which are further aggravated by climate change. This bacterial zoonosis, caused by the Leptospira genus, can be transmitted through contaminated water and soil. The Pacific islands bear a high burden of leptospirosis, making it crucial to identify key factors influencing its distribution.
View Article and Find Full Text PDFThe evolutionary model of construction land serves as a fundamental pillar in national spatial development and planning research. However, previous studies have overlooked the "climbing" mode of construction land on three-dimensional terrains. To address this issue, utilizing elevation data and land use data from 2010 to 2020, this study employs slope analysis, intensity analysis, spatio-temporal transformation, and PLUS model to elucidate the spatial expansion process and driving forces of urban construction land in Chongqing from both two-dimensional and three-dimensional perspectives.
View Article and Find Full Text PDFCurr Biol
January 2025
Department of Neuroscience, Physiology & Pharmacology, UCL, Gower Street, London WC1E 6BT, UK. Electronic address:
Animals construct diverse behavioral repertoires by moving a limited number of body parts with varied kinematics and patterns of coordination. There is evidence that distinct movements can be generated by changes in activity dynamics within a common pool of motoneurons or by selectively engaging specific subsets of motoneurons in a task-dependent manner. However, in most cases, we have an incomplete understanding of the patterns of motoneuron activity that generate distinct actions and of how upstream premotor circuits select and assemble such motor programs.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!