Objective: Little attention has been given and few studies have been published focusing on how to optimize self-monitoring of blood glucose (SMBG) use to monitor daily therapy for persons with type 1 diabetes mellitus. This study was designed to evaluate the effect on glycated hemoglobin (A1C) of a structured intervention focused on SMBG in type 1 diabetes patients with insufficient metabolic control (A1C ≥8%) using a randomized clinical trial design.

Method: One hundred fifty-nine outpatients with type 1 diabetes on multiple injection therapy with insulin and A1C ≥8% were recruited and randomized to one group receiving a focused, structured 9-month SMBG intervention (n=59) and another group receiving regular care based on guidelines (n=64).

Results: Glycated hemoglobin values (mean % ± standard deviation) at study start was similar: 8.65 ± 0.10 in the intervention group and 8.61 ± 0.09 in the control group. The two groups were comparable (age, gender, body mass index, complication rate, and treatment modality) at study start and had mean diabetes duration and SMBG experience of 19 and 20 years, respectively. At study end, there was decrease in A1C in the intervention group (p<.05), and the A1C was 0.6% lower compared with the control group (p<.05). No increase in the number of minor or major hypoglycemia episodes was observed in the intervention group during the study period.

Conclusions: A simple, structured, focused SMBG intervention improved metabolic control in patients with longstanding diabetes type 1 and A1C ≥8%. The intervention was based on general recommendations, realistic in format, and can be applied in a regular outpatient setting.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2769849PMC
http://dx.doi.org/10.1177/193229680900300109DOI Listing

Publication Analysis

Top Keywords

type diabetes
16
self-monitoring blood
12
blood glucose
12
glycated hemoglobin
12
diabetes patients
8
patients insufficient
8
insufficient metabolic
8
metabolic control
8
hemoglobin a1c
8
a1c ≥8%
8

Similar Publications

Identification and validation of up-regulated TNFAIP6 in osteoarthritis with type 2 diabetes mellitus.

Sci Rep

December 2024

Division of Joint Surgery and Sports Medicine, Department of Orthopedic Surgery, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China.

Lines of evidence have indicated that type 2 diabetes mellitus (T2DM) is an independent risk factor for osteoarthritis (OA) progression. However, the study focused on the relationship between T2DM and OA at the transcriptional level remains empty. We downloaded OA- and T2DM-related bulk RNA-sequencing and single-cell RNA sequencing data from the Gene Expression Omnibus (GEO) dataset.

View Article and Find Full Text PDF

This paper introduces a class of insulin-glucose-glucocorticoid impulsive systems in the treatment of patients with diabetes to consider the effect of glucocorticoids. The existence and uniqueness of the positive periodic solution of the impulsive model at double fixed time is confirmed for type 1 diabetes mellitus (T1DM) using the [Formula: see text] function. Further, the global asymptotic stability of the positive periodic solution is achieved following Floquet multiplier theory and comparison principle.

View Article and Find Full Text PDF

The monocyte-to-Apolipoprotein A1 ratio (MAR) emerges as a potentially valuable inflammatory biomarker indicative of metabolic dysfunction-associated fatty liver disease (MASLD). Accordingly, this investigation primarily aims to assess the correlation between MAR and MASLD risk. A cohort comprising 957 individuals diagnosed with type 2 diabetes mellitus (T2DM) participated in this study.

View Article and Find Full Text PDF

Pediatric diabetes I is an endemic and an especially difficult disease; indeed, at this point, there does not exist a cure, but only careful management that relies on anticipating hypoglycemia. The changing physiology of children producing unique blood glucose signatures, coupled with inconsistent activities, e.g.

View Article and Find Full Text PDF

Perivascular adipose tissue: a central player in the triad of diabetes, obesity, and cardiovascular health.

Cardiovasc Diabetol

December 2024

Institute of Physiology, iCBR, Faculty of Medicine, University of Coimbra, Subunit 1, polo 3, Azinhaga de Santa Comba, Celas, 3000-548, Coimbra, Portugal.

Perivascular adipose tissue (PVAT) is a dynamic tissue that affects vascular function and cardiovascular health. The connection between PVAT, the immune system, obesity, and vascular disease is complex and plays a pivotal role in the pathogenesis of vascular diseases such as atherosclerosis, hypertension, and vascular inflammation. In cardiometabolic diseases, PVAT becomes a significant source of proflammatory adipokines, leading to increased infiltration of immune cells, in cardiometabolic diseases, PVAT becomes a significant source of proinflammatory adipokines, leading to increased infiltration of immune cells, promoting vascular smooth muscle cell proliferation and migrationpromoting vascular smooth muscle cell proliferation and migration.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!