To improve bioavailability of poorly water-soluble YH439, a thermal reversible microemulsion system was prepared using modified fatty acids such as capric acid and palmitic acid with PEG 400. A combination of Capric-PEG 400 and Palmitic-PEG 400 with a ratio of 1 : 3 used as a lipid matrix and Cremophor RH40 and Neobee M-5 were selected as an oil and a surfactant, respectively. The microemulsion with melting point of 36.5 degrees C was produced by mixing the lipid matrices, Cremophor RH40 and Neobee M-5 with a volume ratio of 5 : 4 : 1. After the microemulsion was dispersed in the aqueous medium, the average particle size of 28 nm was obtained. At the release measurements of YH439 after 45 min suspension in pH 1.2 aqueous medium, about 80%, 65%, 10% and less than 5% of drug were released from the thermal reversible microemulson, Gelucire formulation, 5% Ca-carboxymethylcellulose (CMC) suspension and YH439 powder, respectively. The apparent permeability of YH439 in microemulsion either from apical to basolateral or basolateral to apical after measuring YH439 across a Caco-2 cell monolayer in a Transwell larger than Gelucire formulation or 5% Na-CMC suspension. The area under the drug concentration-time curves (AUC) and maximal blood concentration (C(max)) after oral administration of YH439 loaded on thermal reversible microemulsion were significantly increased than drug loaded on either Gelucire formulation or 5% Na-CMC suspension. Thus, the present work demonstrates that the thermal reversible microemulsion system of YH439 greatly enhances the bioavailability of YH439 after oral administration due to the improvement of solubility and dispersion of the drug in the artificial gastrointestinal tract without pepsin.

Download full-text PDF

Source
http://dx.doi.org/10.1248/cpb.58.11DOI Listing

Publication Analysis

Top Keywords

thermal reversible
20
reversible microemulsion
16
microemulsion system
12
gelucire formulation
12
yh439
9
water-soluble yh439
8
yh439 oral
8
cremophor rh40
8
rh40 neobee
8
neobee m-5
8

Similar Publications

Article Synopsis
  • Recent research indicates that blocking the RIPK1/RIPK3/MLKL necrosome can help reduce inflammatory pain linked to conditions like demyelination in the central nervous system.
  • This study tests necrostatin-1s (Nec-1s), a specific RIPK1 inhibitor, on LPS-induced inflammatory pain in male mice, assessing pain sensitivity through hot plate tests and examining related protein changes.
  • Results show that Nec-1s not only prevents LPS-induced pain relief but also reverses the activation of key proteins and signals involved in inflammation and demyelination, suggesting that RIPK1 inhibitors could be a promising treatment for managing inflammatory pain.
View Article and Find Full Text PDF

Fish gelatin, a sustainable substitute for mammalian gelatin, frequently exhibits weaker gel strength and thermal stability, limiting its industrial uses. This study investigated an in vivo method to improve functional characteristics by supplementing Nile tilapia diets with Aronia extract. The control diet (A0) contained no Aronia extract, while the remaining four diets consisted of commercial pelleted feed enriched with 250 mg/kg (A250), 500 mg/kg (A500), 750 mg/kg (A750), and 1000 mg/kg (A1000) of Aronia extract.

View Article and Find Full Text PDF

Synchronous Interference of Dual Metabolic Pathways Mediated by HS Gas/GOx for Augmenting Tumor Microwave Thermal Therapy.

ACS Appl Mater Interfaces

January 2025

Key Laboratory of Cryogenics Science and Technology, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Laboratory of Controllable Preparation and Application of Nanomaterials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, China.

Sublethal tumor cells have an urgent need for energy, making it common for them to switch metabolic phenotypes between glycolysis and oxidative phosphorylation (OXPHOS) for compensatory energy supply; thus, the synchronous interference of dual metabolic pathways for limiting energy level is essential in inhibiting sublethal tumor growth. Herein, a multifunctional nanoplatform of Co-MOF-loaded anethole trithione (ADT) and myristyl alcohol (MA), modified with GOx and hyaluronic acid (HA) was developed, namely, CAMGH. It could synchronously interfere with dual metabolic pathways including glycolysis and OXPHOS to restrict the adenosine triphosphate (ATP) supply, achieving the inhibition to sublethal tumors after microwave (MW) thermal therapy.

View Article and Find Full Text PDF

Radiation Damage Mitigation in FeCrAl Alloy at Sub-Recrystallization Temperatures.

Materials (Basel)

December 2024

Department of Mechanical Engineering, The Pennsylvania State University, University Park, PA 16803, USA.

Traditional defect recovery methods rely on high-temperature annealing, often exceeding 750 °C for FeCrAl. In this study, we introduce electron wind force (EWF)-assisted annealing as an alternative approach to mitigate irradiation-induced defects at significantly lower temperatures. FeCrAl samples irradiated with 5 MeV Zr ions at a dose of 10 cm were annealed using EWF at 250 °C for 60 s.

View Article and Find Full Text PDF

The present study aims to analyze the thermal regulation of the Ce/Ce ratio on the nanonetwork titania layer over the titanium (Ti) surface developed by the alkali-mediated surface modification approach. The effect of sequential heat treatment from 200 to 800 °C was evaluated for its surface characteristics such as morphology, phase formation, roughness, hardness, hydrophilicity, etc. Surface oxidation by temperatures up to 600 °C demonstrated a progressive increase in the Ce (CeO) content with a rutile TiO network layer over the Ti surface.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!