Transient transfection of mammalian cells in suspension culture has recently emerged as a very useful method for production of research-scale quantities of recombinant proteins. The most commonly used cell lines for this purpose are suspension-adapted HEK and CHO cells. We report here that the plasma exposure in mice of an IL-23R extracellular domain Fc fusion protein (IL23R-Fc) differed dramatically depending on whether the protein was prepared by transient transfection of HEK or CHO cells. Specifically, IL23R-Fc expressed using CHO cells had about 30-fold higher in vivo plasma exposure compared to the HEK-expressed protein. In contrast to their differing plasma exposures, the HEK- and CHO-expressed proteins had equivalent in vitro biological activity. Characterization of the CHO- and HEK-expressed IL23R-Fc proteins indicated that the differences in in vivo plasma exposure between them are due to differential glycosylation.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.pep.2009.12.015DOI Listing

Publication Analysis

Top Keywords

plasma exposure
16
cho cells
12
il-23r extracellular
8
extracellular domain
8
domain fusion
8
fusion protein
8
transient transfection
8
hek cho
8
vivo plasma
8
cells
5

Similar Publications

Impact of hemoadsorption with CytoSorb® on meropenem and piperacillin exposure in critically ill patients in a post-CKRT setup: a single-center, retrospective data analysis.

Intensive Care Med Exp

January 2025

Freie Universität Berlin and Humboldt-Universität Zu Berlin, Department of Anesthesiology and Intensive Care Medicine, Charité-Universitätsmedizin Berlin, Campus Benjamin Franklin, Berlin, Germany.

Purpose: CytoSorb® (CS) adsorbent is a hemoadsorption filter for extracorporeal blood purification often integrated into continuous kidney replacement therapy (CKRT). It is primarily used in critically ill patients with sepsis and related conditions, including cytokine storms and systemic inflammatory responses. Up to now, there is no evidence nor recommendation for the use of CS filters in sepsis (22).

View Article and Find Full Text PDF

Background: Lowering barometric pressure (LP) can exacerbate neuropathic pain. However, animal studies in this field are limited to a few conditions. Furthermore, although sympathetic involvement has been reported as a possible mechanism, whether the sympathetic nervous system is involved in the hypothalamic-pituitary-adrenal (HPA) axis remains unknown.

View Article and Find Full Text PDF

The effects of social isolation (SI) during middle age remain unclear, so we tested the hypothesis that SI would lead to an increase in impulsive choice (IC), anxiety-like behavior, and metabolic dysfunction in middle-aged rats. Male and female rats were housed individually or in groups of four with same-sex housing mates at 11 months of age. Two months later, IC behavior was assessed using a delay-discounting task and anxiety-like behavior through a novelty-suppressed feeding (NSF) task.

View Article and Find Full Text PDF

A physiologically-based quantitative systems pharmacology model for mechanistic understanding of the response to alogliptin and its application in patients with renal impairment.

J Pharmacokinet Pharmacodyn

January 2025

Department of Clinical Pharmacy and Pharmacy Administration, West China school of Pharmacy, Sichuan University, Chengdu, 610064, China.

Alogliptin is a highly selective inhibitor of dipeptidyl peptidase-4 and primarily excreted as unchanged drug in the urine, and differences in clinical outcomes in renal impairment patients increase the risk of serious adverse reactions. In this study, we developed a comprehensive physiologically-based quantitative systematic pharmacology model of the alogliptin-glucose control system to predict plasma exposure and use glucose as a clinical endpoint to prospectively understand its therapeutic outcomes with varying renal function. Our model incorporates a PBPK model for alogliptin, DPP-4 activity described by receptor occupancy theory, and the crosstalk and feedback loops for GLP-1-GIP-glucagon, insulin, and glucose.

View Article and Find Full Text PDF

Background: 7-Hydroxymethotrexate (7-OHMTX) is the main metabolite in plasma following high-dose MTX (HD-MTX), which may result in activity and toxicity of the MTX. Moreover, 7-OHMTX could produce crystalline-like deposits within the renal tubules under acidic conditions or induce renal inflammation, oxidative stress, and cell apoptosis through various signaling pathways, ultimately leading to kidney damage. The objectives of this study were thus to explore the exposure-safety relationship of two compounds and search the most reliable marker for predicting HDMTX nephrotoxicity.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!