The ribosomal small subunit locus has been used for transgene expression in the rodent malaria parasites, Plasmodium berghei and Plasmodium yoelii, but this strategy utilizes single crossover integration and is thus prone to reversion by plasmid excision. Targeting of the ribosomal subunit locus may also have a negative effect on oocyst development in the mosquito. In P. berghei, the p230 paralog locus has been used for transgene expression. Here, we show that the P. yoelii S1 locus (sporozoite expressed gene 1) (PY05712) is dispensable and can be used for stable transgene expression throughout the parasite life cycle. P. yoelii s1(-) parasites show no defect in blood stage replication, oocyst formation, sporozoite production, or liver stage development when compared to P. yoelii wildtype parasites. Further, we show that a fluorescent transgene can be stably expressed from this site. This demonstrates that the S1 locus can be utilized for stable expression of heterologous genes in rodent malaria parasites.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2839042PMC
http://dx.doi.org/10.1016/j.molbiopara.2009.12.009DOI Listing

Publication Analysis

Top Keywords

transgene expression
16
stable transgene
8
subunit locus
8
locus transgene
8
rodent malaria
8
malaria parasites
8
locus
6
transgene
5
expression
5
dispensable plasmodium
4

Similar Publications

Background: Calmodulin-binding transcription activator (CAMTA) proteins play significant roles in signal transduction, growth and development, as well as abiotic stress responses, in plants. Understanding their involvement in the low-temperature stress response of teak is vital for revealing cold resistance mechanisms.

Results: Through bioinformatics analysis, the CAMTA gene family in teak was examined, and six CAMTA genes were identified in teak.

View Article and Find Full Text PDF

Pugionium cornutum (L.) Gaertn (P. cornutum) has strong tolerance to drought, salt and disease, but the tolerance mechanisms for such stresses in P.

View Article and Find Full Text PDF

Realgar induces apoptosis by inhibiting glycolysis via regulating STAT3 in myelodysplastic syndrome.

J Ethnopharmacol

January 2025

Shanghai municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China. Electronic address:

Ethnopharmacological Relevance: Myelodysplastic syndrome (MDS) is a hematologic malignancy that presents a unique opportunity for traditional Chinese medicine (TCM) to demonstrate its distinctive value in treatment. Realgar, a component of TCM, has shown notable potential in alleviating clinical symptoms and improving the prognosis of MDS patients. However, the precise mechanisms underlying the treatment of MDS with realgar, particularly its effects on apoptosis-related pathways, remain poorly understood.

View Article and Find Full Text PDF

Background: Fabry disease (FD) patients are known to be at high risk of developing neuropsychiatric symptoms such as anxiety, depression and cognitive deficits. Despite this, they are underdiagnosed and inadequately treated. It is unknown whether these symptoms arise from pathological glycosphingolipid deposits or from cerebrovascular abnormalities affecting neuronal functions in the central nervous system.

View Article and Find Full Text PDF

Spinocerebellar Ataxia Type 8 (SCA8) is an inherited neurodegenerative disease caused by a bidirectionally expressed CTG●CAG expansion mutation in the ATXN-8 and ATXN8-OS genes. While SCA8 patients have motor abnormalities, patients may also exhibit psychiatric symptoms and cognitive dysfunction. It is difficult to elucidate how the disease alters brain function in areas with little or no degeneration producing both motor and cognitive symptoms.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!