The production of reactive oxygen species plays roles during the development of endothelial dysfunction and it represents a significant prognostic factor for evaluating the risk of cardiovascular disease. Although statins target cholesterol biosynthesis, the beneficial effects on cardiovascular disease remain to be fully elucidated. In this work, we explored the in vitro effects of pravastatin on vascular functionality. We studied the effect of the incubation with this statin on acetylcholine relaxation using aorta from spontaneously hypertensive rats (SHR). Consistent with a cholesterol-independent mechanism of action, we show that pravastatin induces a significant improvement of endothelium-dependent relaxation that is not completely reversed by mevalonic acid. Assays with 250microM of lucigenin were carried out to verify whether such action could be mediated by the scavenger properties of pravastatin. Treatment of aortic rings derived from Wistar rats with lucigenin promotes superoxide generation (O(2)(-)) and the subsequent loss of both endothelium-dependent and independent relaxations. The addition of pravastatin reduced the lucigenin-triggered O(2)(-) levels as well as its inhibitory effects on acetylcholine- and sodium nitroprusside-dependent responses. These effects were not counteracted by mevalonic acid, further supporting the idea that the effects of pravastatin do not entail alterations in cholesterol biosynthesis. In conclusion, this study can contribute to elucidate the mechanism responsible for the antioxidant activity of pravastatin, and describes relationship between a scavenger effect of pravastatin and the improvement of vascular reactivity.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.ejphar.2009.12.037 | DOI Listing |
Neurochem Res
January 2025
Wuxi School of Medicine, Jiangnan University, Wuxi, 214122, China.
Trehalose has neuroprotective effects in neurodegenerative diseases. This study aimed to explore the impact of trehalose on traumatic brain injury (TBI) by investigating its role in neuroprotection. The TBI mice model was established utilizing the cortical impact technique followed by trehalose treatment.
View Article and Find Full Text PDFFish Physiol Biochem
January 2025
Department of Biological Sciences, College of Science, University of Jeddah, P.O. Box 80327, Jeddah 21589, Saudi Arabia.
High cadmium (Cd) concentrations pose a threat to aquatic life globally. This study examined the efficiency of adding purslane (Portulaca oleracea L.) leaf powder (PLP) to Oreochromis niloticus diets on Cd's negative effects.
View Article and Find Full Text PDFNat Prod Res
January 2025
Department of Medical Microbiology, Faculty of Medicine, Erciyes University, Kayseri, Turkey.
Drone larvae (DL) has many biological activities thanks to the bioactive components it contains, but there are very few studies on its antimicrobial activity. The aim of this research was to determine the antifungal activity of DL (raw and lyophilised) water and ethanol extracts against fluconazole (FLU) sensitive and resistant yeast strains. The 87 fungal strains obtained from clinical samples were identified by phenotypic and molecular methods, and broth microdilution test was used for antifungal activity.
View Article and Find Full Text PDFPest Manag Sci
January 2025
Laboratorio de Bioproducción, Bioinsumos, INIA Las Brujas, Canelones, Uruguay.
Background: Biological control methods involving entomopathogenic fungi like Beauveria bassiana have been shown to be a valuable approach in integrated pest management as an environmentally friendly alternative to control pests and pathogens. Identifying genetic determinants of pathogenicity in B. bassiana is instrumental for enhancing its virulence against insects like the resistant soybean pest Piezodorus guildinii.
View Article and Find Full Text PDFChemistryOpen
January 2025
Department of Chemistry, Faculty of Sciences, University of Guilan, Rasht, 4193833697, Iran.
The inhibition of acetylcholinesterase (AChE), an enzyme responsible for the inactivation and decrease in acetylcholine in the cholinergic pathway, has been considered an attractive target for small-molecule drug discovery in Alzheimer's disease (AD) therapy. In the present study, a series of TZD derivatives were designed, synthesized, and studied for drug likeness, blood-brain barrier (BBB) permeability, and adsorption, distribution, metabolism, excretion, and toxicity (ADMET). Additionally, docking studies of the designed compounds were performed on AChE.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!