This study shows that the specificity of radioimmunoassays can be improved by including a second antibody raised against an undesired cross-reactant. In a radioimmunoassay of prostaglandin E2 (PGE2) involving a monoclonal antibody, the cross-reactivity with 6-keto-prostaglandin E1 (6kPGE1) was decreased from 20% to 2% by including a high concentration of a polyclonal anti-6kPGE1. A similar increase in specificity was obtained in the assay of a larger hapten, luliberin (luteinizing hormone releasing hormone); the cross-reactivity of a luliberin analog was decreased 20-fold. Equations derived from the Law of Mass Action were used for the mathematical analysis and for the computer simulation of changes in assay affinity and specificity according to the quantity and quality of the mixed antibodies. The model gave values that agreed well with experimental data; it promises to be quite useful in designing specific radioimmunoassays.
Download full-text PDF |
Source |
---|
Angew Chem Int Ed Engl
January 2025
Michigan State University, Biochemistry and Molecular Biology, Biochemistry Building, 603 Wilson Rd, Lunt Lab, 48824, 48824, East Lansing, UNITED STATES OF AMERICA.
Photodynamic therapy (PDT) has emerged as a promising targeted treatment for cancer. However, current PDT is limited by low tissue penetration, insufficient phototoxicity (toxicity with light irradiation), and undesirable cytotoxicity (toxicity without light irradiation). Here, we report the discovery of cyanine-carborane salts as potent photosensitizers (PSs) that harness the near-infrared (NIR) absorbing [cyanine+] with the inertness of [carborane-].
View Article and Find Full Text PDFLangmuir
January 2025
Zhejiang Cancer Hospital, The Key Laboratory of Zhejiang Province for Nucleic Acids, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang 310022, China.
Surface antigen-directed immunotherapy is a curative treatment modality for acute myeloid leukemia (AML) that is characterized by the abundance and stability expression of surface antigens. However, current surface antigen-directed immunotherapies have shown poor outcomes and undesirable mortality rates in treating AML patients, primarily due to acquired resistance that arises from using single-target therapies to address the heterogeneous expression of surface antigens. Hence, in order to improve the efficacy of antigen-specific therapies for treating AML, we designed a bispecific aptamer-drug conjugate.
View Article and Find Full Text PDFInt J Parasitol Drugs Drug Resist
January 2025
Department of Biochemical Sciences, Charles University in Prague, Faculty of Pharmacy, Heyrovského 1203, Hradec Králové, CZ-500 05, Czech Republic. Electronic address:
In all organisms, the biotransformation of xenobiotics to less toxic and more hydrophilic compounds represents an effective defense strategy. In pathogens, the biotransformation of drugs (used for their elimination from the host) may provide undesirable protective effects that could potentially compromise the drug's efficacy. Accordingly, increased drug deactivation via accelerated biotransformation is now considered as one of the mechanisms of drug resistance.
View Article and Find Full Text PDFCancer Lett
January 2025
Department of Oral and Maxillofacial Surgery, The First Affiliated Hospital of Harbin Medical University, 23 Youzheng Street, Nangang District, Harbin 150001, People's Republic of China; Department of Pathology, Harbin Medical University, Harbin, 150081, China. Electronic address:
Cancer immunoediting is a dynamic process of tumor-immune system interaction that plays a critical role in cancer development and progression. Recent studies have highlighted the importance of innate signaling pathways possessed by both cancer cells and immune cells in this process. The STING molecule, a pivotal innate immune signaling molecule, mediates DNA-triggered immune responses in both cancer cells and immune cells, modulating the anti-tumor immune response and shaping the efficacy of immunotherapy.
View Article and Find Full Text PDFACS Appl Mater Interfaces
January 2025
Chandra Family Department of Electrical and Computer Engineering, The University of Texas at Austin, Austin, Texas 78712, United States.
A device architecture based on heterostructure WSe/organic semiconductor field-effect transistors (FETs) is demonstrated in which ambipolar conduction is virtually eliminated, resulting in essentially unipolar FETs realized from an ambipolar semiconductor. For p-channel FETs, an electron-accepting organic semiconductor such as hexadecafluorocopperphthalocyanine (FCuPc) is used to form a heterolayer on top of WSe to effectively trap any undesirable electron currents. For n-channel FETs, a hole-accepting organic semiconductor such as pentacene is used to reduce the hole currents without affecting the electron currents.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!