Lysophosphatidic acid (LPA) is a potent bioactive lysophospholipid. Accumulated evidence supports a role for LPA in inflammation. To profile LPA-induced cytokine production in vascular smooth muscle cells (SMCs), we used a cytokine antibody array system and found that LPA prominently induces the secretion of IL-6 and monocyte chemoattractant protein (MCP)-1 from human aortic SMCs (HASMCs). The mechanism by which LPA induces MCP-1 expression in SMCs has been previously reported. However, LPA induction of IL-6 secretion from vascular SMCs and its regulatory mechanism are unknown. The present study reveals that LPA induces the expression of IL-6 mRNA and protein in HASMCs as well as the secretion of IL-6 protein in a time-dependent manner. Our results demonstrate that LPA-specific receptor 1 (LPA(1)) mediates LPA-induced IL-6 secretion and that LPA induction of IL-6 is independent of the EGF receptor pathway. Our data further show that PKC-mediated p38 MAPK is responsible for the IL-6 secretion. Finally, small interfering RNA depletion experiments revealed that p38alpha is specifically responsible for the LPA-induced IL-6 secretion. The present study profiles the regulatory relationship between LPA and multiple cytokines in vascular SMCs for the first time, provides the first evidence that LPA upregulates IL-6 in vascular SMCs, and reveals the regulatory mechanism of LPA-induced IL-6 production in HASMCs. In light of the emerging roles of LPA and IL-6 in vascular inflammation, the understanding of the regulatory mechanism may contribute to the treatment and prevention of cardiovascular disorders.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2838556PMC
http://dx.doi.org/10.1152/ajpheart.00895.2009DOI Listing

Publication Analysis

Top Keywords

il-6 secretion
20
lpa induces
12
il-6
12
vascular smcs
12
regulatory mechanism
12
lpa-induced il-6
12
lpa
11
smooth muscle
8
muscle cells
8
secretion il-6
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!