Mucopolysaccharidosis I (MPS I) and MPS VII are due to loss-of-function mutations within the genes that encode the lysosomal enzymes alpha-l-iduronidase and beta-glucuronidase, respectively, and result in accumulation of glycosaminoglycans and multisystemic disease. Both disorders are associated with elastin fragmentation and dilatation of the aorta. Here, the pathogenesis and effect of gene therapy on aortic disease in canine models of MPS was evaluated. We found that cathepsin S is upregulated at the mRNA and enzyme activity level, while matrix metalloproteinase 12 (MMP-12) is upregulated at the mRNA level, in aortas from untreated MPS I and MPS VII dogs. Both of these proteases can degrade elastin. In addition, mRNA levels for the interleukin 6-like cytokine oncostatin M were increased in MPS I and MPS VII dog aortas, while mRNA for tumor necrosis factor alpha and toll-like receptor 4 were increased in MPS VII dog aortas. These cytokines could contribute to upregulation of the elastases. Neonatal intravenous injection of a retroviral vector expressing beta-glucuronidase to MPS VII dogs reduced RNA levels of cathepsin S and MMP-12 and aortic dilatation was delayed, albeit dilatation developed at late times after gene therapy. A post-mortem aorta from a patient with MPS VII also exhibited elastin fragmentation. We conclude that aortic dilatation in MPS I and MPS VII dogs is likely due to degradation of elastin by cathepsin S and/or MMP-12. Inhibitors of these enzymes or these cytokine-induced signal transduction pathways might reduce aortic disease in patients with MPS.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2838970PMC
http://dx.doi.org/10.1016/j.ymgme.2009.12.003DOI Listing

Publication Analysis

Top Keywords

mps vii
28
vii dogs
16
mps mps
16
mps
13
vii
8
elastin fragmentation
8
gene therapy
8
aortic disease
8
upregulated mrna
8
increased mps
8

Similar Publications

Mucopolysaccharidosis (MPS) comprises a group of inherited metabolic diseases. Each MPS type is caused by a deficiency in the activity of one kind of enzymes involved in glycosaminoglycan (GAG) degradation, resulting from the presence of pathogenic variant(s) of the corresponding gene. All types/subtypes of MPS, which are classified on the basis of all kinds of defective enzymes and accumulated GAG(s), are severe diseases.

View Article and Find Full Text PDF

Mucopolysaccharidosis (MPS) consists of a heterogeneous group of multisystem disorders that are usually inherited. This spectrum consists of seven subtypes in total. Sly syndrome, also known as type VII MPS, is a multisystem disorder with a wide array of symptoms that overlap with other mucopolysaccharide disorders.

View Article and Find Full Text PDF

Background: Patients with mucopolysaccharidosis (MPS) often face delayed diagnoses, limited treatment options and high healthcare costs, that may significantly affect patients' quality of life. The objective of this study was to understand medical service utilization related to diagnosis and treatment, economic burden during diagnosis period, and health-related quality of life among MPS patients in China.

Methods: A series of patients diagnosed with MPS registered in the national patient organization were recruited for a cross-sectional survey from May to July 2019.

View Article and Find Full Text PDF

Causes of death in mucopolysaccharidoses.

Mol Genet Metab

July 2024

Department of Molecular Biology, Faculty of Biology, University of Gdansk, Wita Stwosza, 59, 80-308 Gdansk, Poland.

Mucopolysaccharidoses are inherited metabolic diseases caused by mutations in genes encoding enzymes required for degradation of glycosaminoglycans. A lack or severe impairment of activity of these enzymes cause accumulation of GAGs which is the primary biochemical defect. Depending on the kind of the deficient enzyme, there are 12 types and subtypes of MPS distinguished.

View Article and Find Full Text PDF

Background: Mucopolysaccharidosis VII (MPS VII) is an ultra-rare, autosomal recessive, debilitating, progressive lysosomal storage disease caused by reduced activity of β-glucuronidase (GUS) enzyme. Vestronidase alfa (recombinant human GUS) intravenous enzyme replacement therapy is an approved treatment for patients with MPS VII.

Methods: This disease monitoring program (DMP) is an ongoing, multicenter observational study collecting standardized real-world data from patients with MPS VII (N ≈ 50 planned) treated with vestronidase alfa or any other management approach.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!