Background: The availability of suitable lung donors has remained a significant barrier to lung transplantation. The clinical relevance of an isolated positive Gram stain in potential donor lungs, which occurs in >80%, is unclear. Low doses of lipopolysaccharide (LPS) have been protective in several models of ischemia-reperfusion injury through a pre-conditioning response. We sought to demonstrate that low-dose LPS is protective against subsequent lung ischemia-reperfusion injury.
Methods: Pathogen-free Long-Evans rats were pre-treated with vehicle or LPS 24 hours before 90 minutes of ischemia and up to 4 hours of reperfusion. Lungs were assessed for vascular permeability, myeloperoxidase content, bronchoalveolar lavage inflammatory cell and cytokine/chemokine content, as well as nuclear translocation of nuclear factor kappaB (NFkappaB) and activator protein-1 (AP-1), and interleukin-1 receptor-associated kinase-1 (IRAK-1) and stress-activated protein kinase (SAPK) activation.
Results: Compared with positive controls, LPS pre-treatment resulted in reductions in vascular permeability (70%, p < 0.001), myeloperoxidase content (93%, p < 0.001), bronchoalveolar lavage inflammatory cells (91%, p < 0.001), and inflammatory cytokine/chemokine content (cytokine-induced neutrophil chemoattractant, 99%, p = 0.003; interleukin-1beta, 72%, p < 0.0001; tumor necrosis factor-alpha, 76%, p < 0.0001), NFkappaB (86%, p < 0.001) and AP-1 (97%, p < 0.001) nuclear translocation, and IRAK-1 (87%, p < 0.001) and SAPK (80%, p < 0.001) phosphorylation.
Conclusions: Lipopolysaccharide pre-treatment reduced lung injury and inflammatory mediator production after subsequent exposure to ischemia-reperfusion. Understanding the clinical significance of lipopolysaccharide in donor lungs has the potential to expand and clarify donor inclusion criteria.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3052281 | PMC |
http://dx.doi.org/10.1016/j.healun.2009.11.005 | DOI Listing |
J Cardiothorac Surg
January 2025
Department of Cardiology, Beijing Anzhen Hospital, Beijing Institute of Heart, Lung, and Blood Vessel Diseases, Capital Medical University, Beijing, 100069, China.
Objective: miRNA, circRNA, and lncRNA play crucial roles in the pathogenesis and progression of myocardial ischemia-reperfusion injury (MI/RI). This study aims to provide valuable insights into miRNA, circRNA, lncRNA, and MI/RI from a bibliometric standpoint, with the goal of fostering further advancements in this area.
Methods: The relevant literature in the field of miRNA, circRNA, lncRNA, and MI/RI was retrieved from the Science Citation Index Expanded (SCI-E) database within Web of Science.
J Heart Lung Transplant
February 2025
Department of Cardiothoracic Surgery, Vanderbilt University Medical Center, Nashville, Tennessee.
Background: Ex-vivo lung perfusion (EVLP) has potential to expand donor lung utilization, evaluate allograft viability, and mitigate ischemia-reperfusion injury. However, trends in EVLP use and recipient outcomes are unknown on a national scale. We examined trends in EVLP use and recipient outcomes in the United States.
View Article and Find Full Text PDFJ Inflamm Res
January 2025
Department of Respiratory and Critical Care Medicine, Renmin Hospital of Wuhan University, Wuhan, Hubei, 430060, People's Republic of China.
Background: Lung transplantation is the only effective therapeutic option for patients with end-stage lung disease. However, ischemia/reperfusion injury (IRI) during transplantation is a leading cause of primary graft dysfunction (PGD). Ferroptosis, a form of iron-dependent cell death driven by lipid peroxidation, has been implicated in IRI across various organs.
View Article and Find Full Text PDFInt J Surg
January 2025
Department of thoracic and cardiovascular surgery, Huashan Hospital, Affiliated with Fudan University, Shanghai, China.
Background: Pulmonary ischemia-reperfusion injury (PIRI) is a major cause of fatality post-lung transplantation. Though some long non-coding RNAs (lncRNAs) have been studied in acute lung injury (ALI), their effects on PIRI remain undefined. The present study aims to explore the underlying mechanism of small nucleolar RNA host gene 16 (SNHG16) in PIRI.
View Article and Find Full Text PDFNaunyn Schmiedebergs Arch Pharmacol
January 2025
Department of Physiology and Pharmacology, Afzalipour Medical Faculty, Kerman university of Medical Sciences, Kerman, Iran.
Lung Ischemia-reperfusion injury (LIRI) is a risk during lung transplantation that can cause acute lung injury and organ failure. In LIRI, the NF-E2-related factor 2(Nrf2)/ Kelch-like ECH-associated protein 1 (Keap1) signaling pathway and the nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) signaling pathway are two major pathways involved in regulating oxidative stress and inflammation, respectively. Myrtenol, a natural compound with anti-inflammatory and antioxidant properties, has potential protective effects against IRI.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!