Grain sorghum (Sorghum bicolor) crop yield is significantly compromised by high temperature stress-induced male sterility, and is attributed to reduced cell wall invertase (CWI)-mediated sucrose hydrolysis in microspores and anthers leading to altered carbohydrate metabolism and starch deficiency in pollen (Jain et al., 2007). Sorghum plants were grown under season-long ambient (30/20 degrees C day-time maximum/night-time minimum) or high temperature stress (HS, 36/26 degrees C) environments, or reciprocally transferred for 5-10 days between either temperature regimens through panicle and microspore developmental stages. Quantitative RT-PCR analyses for CWI gene SbIncw1, plasma membrane H(+)-ATPase (Mha1) and sugar transporter proteins (OsSUT3 and OsMST7 homologs in sorghum), starch deficiency and pollen sterility data are presented to confirm HS-sensitivity of pre- and post-meiotic stages of sorghum microsporogenesis. Heat stress-induced reduction in Incw transcriptional activity during microspore meiosis was irreversible despite return of optimal growth temperature conditions through further reproductive development.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.jplph.2009.11.007 | DOI Listing |
Nano Lett
January 2025
Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123, P. R. China.
Along with the rapid development of the digital economy and artificial intelligence, heat sinks available for immersion phase-change liquid cooling (IPCLC) of chips are facing huge challenges. Here, we design a high-performance IPCLC heat sink based on a copper microgroove/nanocone (MGNC) composite structure. Maximal heat fluxes () of the MGNC structure, microgroove structure, and flat copper reach 112.
View Article and Find Full Text PDFVet Res Commun
January 2025
College of Animal Science and Veterinary Medicine, Tianjin Agricultural University, No.22, Jinjing Road, Xiqing District, Tianjin, 300384, China.
Recent outbreaks of PRRSV in live attenuated vaccine-immunized pig farms in Tianjin, China have raised questions about the etiological characteristics and pathogenicity of the PRRSV variant, which remains unknown. In this study, a multiple lineages recombinant PRRSV strain named TJ-C6, was isolated and identified. Phylogenetic trees and genome homology analyses revealed that TJ-C6 belonged to lineage 1.
View Article and Find Full Text PDFNano Lett
January 2025
Max Planck Institute for Chemical Physics of Solids, 01187 Dresden, Germany.
The advent of two-dimensional van der Waals materials is a frontier of condensed matter physics and quantum devices. However, characterizing such materials remains challenging due to the limitations of bulk material techniques, necessitating the development of specialized methods. Here, we investigate the superconducting properties of BiSrCaCuO flakes by integrating them with a hybrid superconducting microwave resonator.
View Article and Find Full Text PDFMater Horiz
January 2025
Key Laboratory of Polymer Processing Engineering of the Ministry of Education, National Engineering Research Center of Novel Equipment for Polymer Processing, Guangdong Provincial Key Laboratory of Technique and Equipment for Macromolecular Advanced Manufacturing, South China University of Technology, Guangzhou 510641, People's Republic of China.
Passive daytime radiative cooling offers a promising approach to address energy, environmental, and safety issues caused by global warming. However, the contradiction between high radiative cooling performance and long-lasting ultraviolet (UV) durability is a primary limitation at the current stage. Here, inspired by the ability of epidermal cells and palisade cells on the leaf surface to protect internal leaf structures (such as chloroplasts and nuclei) under drought and high-temperature conditions, a double-layer passive radiative cooling (PRC) porous membrane, which consists of an upper protective layer densely packed with highly ultraviolet-reflective inorganic particles and a bottom cooling layer doped with a variety of optically characterized inorganic particles, was developed to overcome these challenges.
View Article and Find Full Text PDFAnal Chem
January 2025
ICGM, Univ. Montpellier, CNRS, ENSCM, 34000 Montpellier, France.
In this contribution, we apply our newly developed ball-milling platform, which combines Raman spectroscopy and thermal (IR) imaging, as well as acoustic and high-speed optical video recordings, to the synthesis and transformation of citric acid-isonicotinamide (1:2) cocrystal polymorphs in transparent PMMA jars. Particularly, we demonstrate how Raman, temperature, acoustic, and video data are complementary and enable detection and connection of chemical and physical events happening during ball-milling in a time-resolved manner. Importantly, we show that the formation of the three cocrystal polymorphs can be detected through acoustic analyses solely.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!