We investigated whether polychlorinated biphenyls (PCBs) and water could be simultaneously removed from river sediment by solvent extraction using liquefied dimethyl ether (DME) as the extractant. DME exists in a gaseous state at normal temperature and pressure and can dissolve organic substances and some amount of water; therefore, liquefied DME under moderate pressure (0.6-0.8 MPa) at room temperature can be effectively used to extract PCBs and water from contaminated sediment, and it can be recovered from the extract and reused easily. First, we evaluated the PCB and water extraction characteristics of DME from contaminated sediment. We found that 99% of PCBs and 97% of water were simultaneously extracted from the sediment using liquefied DME at an extraction time of 4320 s and a liquefied DME/sediment ratio of 60 mL g(-1). The extraction rate of PCBs and water was expressed in terms of a pseudo-first-order reaction rate. Second, we estimated the amount of DME that was recovered after extraction. We found that 91-92% of DME could be recovered. In other words, approximately 5-10% of DME was lost during extraction and recovery. It is necessary to optimize this process in order to recover DME efficiently. The extraction efficiency of the recovered DME is similar to that of the pure DME. From the results, we conclude that solvent extraction using liquefied DME is suitable for extracting PCBs and water from contaminated sediment.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.chemosphere.2009.12.017 | DOI Listing |
Small Methods
January 2025
Forschungszentrum Juelich GmbH, Institute of Energy Technologies, IET-4, Electrochemical Process Engineering, 52425, Juelich, Germany.
Understanding the sheet resistance of porous electrodes is essential for improving the performance of polymer electrolyte membrane (PEM) water electrolyzers and related technologies. Despite its importance, existing methods often fail to provide reliable and comprehensive data, especially for porous materials with complex morphologies and non-uniform thicknesses. This study introduces a robust and straightforward method for determining the sheet resistance of porous electrodes using a novel probe concept based on industrial printed circuit board (PCB) technology.
View Article and Find Full Text PDFSe Pu
February 2025
School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, China.
Solid-phase microextraction (SPME) is a fast and simple sample preparation technique that enables the enrichment of analytes, and it is used in combination with other detection techniques to provide accurate and sensitive analytical methods. SPME is widely used in environmental monitoring, food safety, life analysis, biomedicine, and other applications. The extractive coating is the core of the SPME technique, and the properties of the extractive coating greatly influence extraction selectivity and efficiency, as well as the enrichment effect.
View Article and Find Full Text PDFAnal Methods
January 2025
Marine Elements and Marine Environment Division, CSIR-Central Salt & Marine Chemicals Research Institute, Bhavnagar 364 002, Gujarat, India.
Monitoring persistent organic pollutants (POPs) with endocrine-disrupting properties poses significant analytical challenges due to labor-intensive, costly, and environmentally unsustainable procedures. This study developed an efficient and robust approach for the simultaneous detection of diverse groups of semi-volatile organics in water and sediment samples using gas chromatography-tandem mass spectrometry (GC-MS). Two extraction methods were studied for determining POPs in water and sediments.
View Article and Find Full Text PDFSci Total Environ
February 2025
Centro de Genómica, Ecología y Medio Ambiente (GEMA), Universidad Mayor, Campus Huechuraba, Santiago, Chile; Institute of Environment, Florida International University, University Park, Miami, FL 33199, USA; Data Observatory Foundation, Santiago, Chile. Electronic address:
Semi-volatile organic compounds (SVOCs) are widely distributed across the globe, including polar regions. This study investigates the distribution and bioconcentration of organochlorine pesticides (OCPs), polychlorinated biphenyls (PCBs), and polycyclic aromatic hydrocarbons (PAHs) in soils and Colobanthus quitensis, while also estimating potential emission sources. Results indicated high concentrations of PAHs in soils and plants from the Sub-Antarctic region, while OCPs and PCBs were more prevalent in the Antarctic region, with higher contaminant concentrations found in soils than in plant tissues.
View Article and Find Full Text PDFSci Total Environ
February 2025
Wildlife Health Lab, Animal Health Diagnostic Center, College of Veterinary Medicine, Cornell University, 240 Farrier Rd, Ithaca, NY 14853, USA. Electronic address:
Waterfowl serve as indicators of ecosystem health and represent a pathway of contaminant exposure for hunters who consume them. In the northeast Atlantic Flyway, data on baseline contaminant loads in waterfowl are lacking. We assessed five species of commonly harvested (and consumed) waterfowl for mercury, polychlorinated dibenzo-p-dioxins and polychlorinated dibenzofurans, polychlorinated biphenyls (PCBs), organochlorine pesticides (OCPs), and per- and polyfluoroalkyl substances (PFAS).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!