The volatiles released by Phaeobacter gallaeciensis, Oceanibulbus indolifex and Dinoroseobacter shibae have been investigated by GC-MS, and several MeSH-derived sulfur volatiles have been identified. An important sulfur source in the oceans is the algal metabolite dimethylsulfoniopropionate (DMSP). Labelled [2H6]DMSP was fed to the bacteria to investigate the production of volatiles from this compound through the lysis pathway to [2H6]dimethylsulfide or the demethylation pathway to [2H3]-3-(methylmercapto)propionic acid and lysis to [2H3]MeSH. [2H6]DMSP was efficiently converted to [2H3]MeSH by all three species. Several DMSP derivatives were synthesised and used in feeding experiments. Strong dealkylation activity was observed for the methylated ethyl methyl sulfoniopropionate and dimethylseleniopropionate, as indicated by the formation of EtSH- and MeSeH-derived volatiles, whereas no volatiles were formed from dimethyltelluriopropionate. In contrast, the dealkylation activity for diethylsulfoniopropionate was strongly reduced, resulting in only small amounts of EtSH-derived volatiles accompanied by diethyl sulfide in P. gallaeciensis and O. indolifex, while D. shibae produced the related oxidation product diethyl sulfone. The formation of diethyl sulfide and diethyl sulfone requires the lysis pathway, which is not active for [2H6]DMSP. These observations can be explained by a shifted distribution between the two competing pathways due to a blocked dealkylation of ethylated substrates.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/cbic.200900668 | DOI Listing |
Anal Chim Acta
May 2025
State Key Laboratory of Natural Medicines, China Pharmaceutical University, No. 639 Longmian Dadao, Nanjing, 211198, China. Electronic address:
Background: Traditional studies of protein responses to external stimuli primarily focus on changes in protein abundance, often overlooking the critical role of protein conformational alterations. To address this gap, we developed Protein Abundance and Conformation Analysis (PACA), an integrative method that quantifies both protein abundance and conformational changes. PACA combines conventional quantitative proteomics for abundance measurements with Target Response Accessibility Profiling (TRAP), a technique that captures conformational changes in situ by applying reductive dimethylation to label accessible lysine residues in living cells before lysis.
View Article and Find Full Text PDFFront Cell Dev Biol
February 2025
Department of Medical and Surgical Science of Infant and Adult, University of Modena and Reggio Emilia, Modena, Italy.
Background: In the human placenta, we have detected the MPs by Raman microspectroscopy analysis and, for the first time, with transmission electron microscopy. MPs fragments have been localized in different compartments of placental tissue, free in the cytoplasm and within organelles like lysosomes. Moreover, their presence has been correlated with ultrastructural alterations of some cell organelles, typical of metabolic stress, mainly dilated rough endoplasmic reticulum and numerous swollen electrodense mitochondria, as well as signs derived from involuting organelles.
View Article and Find Full Text PDFReprod Biol
March 2025
State Key Laboratory of Animal Biotech Breeding, National Engineering Laboratory for Animal Breeding, Key Laboratory of Animal Genetics, Breeding and Reproduction of the Ministry of Agriculture, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China. Electronic address:
The physiological function and metabolism of granulosa cells (GCs) are highly regulated processes that coordinate cells specification and morphogenesis to produce related cytokines and secretions that are closely associated with follicular development. However, there is no comprehensive understanding of the molecular functions of GCs in follicular atresia. Here, we investigated follicular morphological features, fibrosis, vascular changes, and immune cell distribution.
View Article and Find Full Text PDFNat Commun
March 2025
Department of Microbiology, Anatomy, Physiology and Pharmacology, La Trobe University, Bundoora, VIC, Australia.
The obligate necrotrophic parasite, Candidatus Mycosynbacter amalyticus, a member of the Patescibacteria has been isolated from wastewater. Subsequent efforts have been directed toward unravelling its biological lifecycle and attachment mechanism facilitating infection and subsequent lysis of its Actinobacterial host, Gordonia amarae. Here, using electron cryo-tomography (CryoET), we reveal the molecular anatomy of parasitic Mycosynbacter amalyticus cells, uncovering an unusual infection process.
View Article and Find Full Text PDFPhytopathology
March 2025
Fundo de Defesa da Citricultura, Research & Development, Araraquara, SP, Brazil.
One of the prominent bacterial diseases impacting orange production and trade is citrus canker, caused by the bacterium subsp. (). The management of citrus canker involves deploying copper products as a protective measure to control the development of symptoms, which carries the risk of selecting strains that are resistant to copper.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!