Objective: Loss-of-function mutations in genes coding for transforming growth factor-beta/bone morphogenetic protein receptors and changes in nitric oxide(*) (NO(*)) bioavailability are associated with hereditary hemorrhagic telangiectasia and some forms of pulmonary arterial hypertension. How these abnormalities lead to seemingly disparate pulmonary pathologies remains unknown. Endoglin (Eng), a transforming growth factor-beta coreceptor, is mutated in hereditary hemorrhagic telangiectasia and involved in regulating endothelial NO(*) synthase (eNOS)-derived NO(*) production and oxidative stress. Because some patients with pulmonary arterial hypertension harbor ENG mutations leading to haplo insufficiency, we investigated the pulmonary vasculature of Eng(+/-) mice and the potential contribution of abnormal eNOS activation to pulmonary arterial hypertension.
Methods And Results: Hemodynamic, histological, and biochemical assessments and x-ray micro-CT imaging of adult Eng(+/-) mice indicated signs of pulmonary arterial hypertension including increased right ventricular systolic pressure, degeneration of the distal pulmonary vasculature, and muscularization of small arteries. These findings were absent in 3-week-old Eng(+/-) mice and were attributable to constitutively uncoupled eNOS activity in the pulmonary circulation, as evidenced by reduced eNOS/heat shock protein 90 association and increased eNOS-derived superoxide ((*)O(2)(-)) production in a BH(4)-independent manner. These changes render eNOS unresponsive to regulation by transforming growth factor-beta/bone morphogenetic protein and underlie the signs of pulmonary arterial hypertension that were prevented by Tempol.
Conclusions: Adult Eng(+/-) mice acquire signs of pulmonary arterial hypertension that are attributable to uncoupled eNOS activity and increased (*)O(2)(-) production, which can be prevented by antioxidant treatment. Eng links transforming growth factor/bone morphogenetic protein receptors to the eNOS activation complex, and its reduction in the pulmonary vasculature leads to increased oxidative stress and pulmonary arterial hypertension.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1161/ATVBAHA.109.200121 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!