A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Mechano-transduction in osteoblastic cells involves strain-regulated estrogen receptor alpha-mediated control of insulin-like growth factor (IGF) I receptor sensitivity to Ambient IGF, leading to phosphatidylinositol 3-kinase/AKT-dependent Wnt/LRP5 receptor-independent activation of beta-catenin signaling. | LitMetric

The capacity of bones to adjust their mass and architecture to withstand the loads of everyday activity derives from the ability of their resident cells to respond appropriately to the strains engendered. To elucidate the mechanisms of strain responsiveness in bone cells, we investigated in vitro the responses of primary mouse osteoblasts and UMR-106 osteoblast-like cells to a single period of dynamic strain. This stimulates a cascade of events, including activation of insulin-like growth factor I receptor (IGF-IR), phosphatidylinositol 3-kinase-mediated phosphorylation of AKT, inhibition of GSK-3beta, increased activation of beta-catenin, and associated lymphoid-enhancing factor/T cell factor-mediated transcription. Initiation of this pathway does not involve the Wnt/LRP5/Frizzled receptor and does not culminate in increased IGF transcription. The effect of strain on IGF-IR is mimicked by exogenous des-(1-3)IGF-I and is blocked by the IGF-IR inhibitor H1356. Inhibition of strain-related prostanoid and nitric oxide production inhibits strain-related (and basal) AKT activity, but their separate ectopic administration does not mimic it. Strain-related IGF-IR activation of AKT requires estrogen receptor alpha (ERalpha) with which IGF-1R physically associates. The ER blocker ICI 182,780 increases the concentration of des-(1-3)IGF-I necessary to activate this cascade, whereas estrogen inhibits both basal AKT activity and its activation by des-(1-3)IGF-I. These data suggest an initial cascade of strain-related events in osteoblasts in which strain activates IGF-IR, in association with ERalpha, so initiating phosphatidylinositol 3-kinase/AKT-dependent activation of beta-catenin and altered lymphoid-enhancing factor/T cell factor transcription. This cascade requires prostanoid/nitric oxide production and is independent of Wnt/LRP5.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2838297PMC
http://dx.doi.org/10.1074/jbc.M109.027086DOI Listing

Publication Analysis

Top Keywords

activation beta-catenin
12
estrogen receptor
8
insulin-like growth
8
growth factor
8
phosphatidylinositol 3-kinase/akt-dependent
8
lymphoid-enhancing factor/t
8
factor/t cell
8
oxide production
8
basal akt
8
akt activity
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!