Microbiological analyses of sediment samples were conducted to explore potentials and limitations for bioremediation of field sites polluted with chlorinated ethenes. Intact sediment cores, collected by direct push probing from a 35-ha contaminated area, were analyzed in horizontal layers. Cultivation-independent PCR revealed Dehalococcoides to be the most abundant 16S rRNA gene phylotype with a suspected potential for reductive dechlorination of the major contaminant trichloroethene (TCE). In declining abundances, Desulfitobacterium, Desulfuromonas and Dehalobacter were also detected. In TCE-amended sediment slurry incubations, 66% of 121 sediment samples were dechlorinating, among them one-third completely and the rest incompletely (end product cis-1,2-dichloroethene; cDCE). Both PCR and slurry analyses revealed highly heterogeneous horizontal and vertical distributions of the dechlorination potentials in the sediments. Complete reductive TCE dechlorination correlated with the presence of Dehalococcoides, accompanied by Acetobacterium and a relative of Trichococcus pasteurii. Sediment incubations under close to in situ conditions showed that a low TCE dechlorination activity could be stimulated by 7 mg L(-1) dissolved carbon for cDCE formation and by an additional 36 mg carbon (lactate) L(-1) for further dechlorination. The study demonstrates that the highly heterogeneous distribution of TCE degraders and their specific requirements for carbon and electrons are key issues for TCE degradation in contaminated sites.

Download full-text PDF

Source
http://dx.doi.org/10.1111/j.1574-6941.2009.00820.xDOI Listing

Publication Analysis

Top Keywords

analyses sediment
8
sediment cores
8
sediment samples
8
highly heterogeneous
8
tce dechlorination
8
dechlorination
6
sediment
6
tce
5
spatial heterogeneity
4
heterogeneity dechlorinating
4

Similar Publications

Naturally weathered polypropylene (NWPP) samples are useful for investigating the effects of various degradation factors that cannot be obtained in artificial laboratory experiments. In this study, NWPP samples were extracted from beach sediments (Ashiya, Hyogo, Japan). Raman and attenuated total reflection (ATR)-Fourier-transform infrared (FTIR) spectroscopies were used to analyze variations in the composition, crystallinity, orientation, and degradation of NWPP microplastics.

View Article and Find Full Text PDF

Ecological and health risk assessment of Sharm El-sheikh beach sediments, Red Sea coast.

Mar Pollut Bull

January 2025

Department of Marine Geology, Faculty of Marine Sciences, King Abdulaziz University, Jeddah 21589, Saudi Arabia.

Sharm El-Sheikh, located at the southern entrance of the Gulf of Aqaba, is a key tourist destination known for its mild climate and commitment to environmental initiatives, notably hosting COP27 in 2022. This study evaluates heavy metal contamination in beach sediments to assess environmental and human risks. Sampling was conducted at Sharm Port and El-Maya Bay, both popular tourist areas.

View Article and Find Full Text PDF

, , and () in Brazilian caves, with the description of four new species.

Fungal Syst Evol

December 2024

Departamento de Micologia Prof. Chaves Batista, Centro de Biociências, Universidade Federal de Pernambuco (UFPE), Avenida da Engenharia, s/n, Cidade Universitária, CEP: 50740-600, Recife, PE, Brazil.

The study of the Brazilian cave mycobiota has revealed a rich but highly diverse assemblage of fungi, with , , and being the most frequently reported genera. The present study investigated the airborne fungi and fungi obtained from the bodies of bats, guano, and the soil/sediment from the caves Urubu (in the Atlantic Forest) and Furna Feia (in the Caatinga dryland forest) in the Northeast region of Brazil. Fungal strains were identified based on morphological features and multilocus phylogenetic analyses of ITS, beta-tubulin (), calmodulin (), and RNA polymerase II second largest subunit () sequences.

View Article and Find Full Text PDF

Spatial Patterns of Microbial Communities in Intertidal Sediments of the Yellow River Estuary, China.

Microb Ecol

January 2025

College of Marine Life Sciences and Frontiers Science Center for Deep Ocean Multispheres and Earth System, Ocean University of China, 5 Yushan Road, Qingdao, 266003, China.

Estuarine ecosystems are among the most important natural ecosystems on Earth and contribute substantially to human survival and development. The Yellow River Estuary (YRE) is the second largest estuary in China. Microbial communities play an essential role in the material cycle and energy flow in estuarine ecosystems.

View Article and Find Full Text PDF

Terrestrial nanoparticles and geospatial optics: Implications for environmental impact from anthropogenic contaminants in the Caribbean region.

Sci Total Environ

January 2025

Centre of Molecular and Environmental Biology (CBMA), Aquatic Research Network (ARNET) Associate Laboratory, Department of Biology, University of Minho, 4710-057 Braga, Portugal; Institute of Science and Innovation for Bio-Sustainability (IB-S), University of Minho, 4710-057 Braga, Portugal.

Atmospheric contaminants from natural processes and anthropogenic activities pose a major problem to the environment. Here we analyze the dynamics of atmospheric and terrestrial contaminant concentrations in sediments containing chemical elements, such as nanoparticles (NPs) and ultrafine particles in hydrological sources of the Caribbean region of Colombia. Terrestrial sediments were collected from 2022 to 2024, and quantified for major chemical elements in the form of NPs and ultrafine particles in runoff receiving areas along the banks of Colombia's Ciénaga Grande in Santa Marta Bay, on the Isla de Salamanca.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!