Aim: Prader-Willi syndrome (PWS) is a genetic disorder historically characterized by two phenotypic stages. The early phenotype in infants is associated with hypotonia, poor suck, and failure to thrive. In later childhood, PWS is associated with intellectual disability, hyperphagia, as well as growth and sex hormone deficiency. Little is known about the transition between phenotypes. This study investigates the nature of the change in infancy and childhood PWS.
Method: Forty-six children (22 females, 24 males; mean age 2 y 9 mo, SD 18.9 mo; range 7 mo-5 y) with genetically confirmed PWS participated. Information was obtained on childhood height and weight, and eating behaviour from case notes and by parental interview.
Results: Weight standard deviation scores (SDS) started to exceed height by the end of the first year. Height SDS appeared to fall from near normal at birth until stabilizing below normal around 2 years. Half of the children whose body mass index (BMI) was higher than normal at interview had food interests greater than that of their peers, and the age at which increased age-appropriate eating was first noted was later than the increase of BMI SDS.
Interpretation: Obesity may develop before the increased interest in food, suggesting underlying physiological factors independent of appetite control may be important.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1111/j.1469-8749.2009.03530.x | DOI Listing |
Cancer cells within tumors exhibit a wide range of phenotypic states driven by non-genetic mechanisms in addition to extensively studied genetic alterations. Conversions among cancer cell states can result in intratumoral heterogeneity which contributes to metastasis and development of drug resistance. However, mechanisms underlying the initiation and/or maintenance of such phenotypic plasticity are poorly understood.
View Article and Find Full Text PDFThe maintenance of a healthy epithelial-endothelial juxtaposition requires cross-talk within glomerular cellular niches. We sought to understand the spatially-anchored regulation and transition of endothelial and mesangial cells from health to injury in DKD. From 74 human kidney samples, an integrated multi-omics approach was leveraged to identify cellular niches, cell-cell communication, cell injury trajectories, and regulatory transcription factor (TF) networks in glomerular capillary endothelial (EC-GC) and mesangial cells.
View Article and Find Full Text PDFBreast Cancer Res
January 2025
School of Electronic Engineering and Computer Science, Queen Mary University of London, London, UK.
Recent evidence indicates that endocrine resistance in estrogen receptor-positive (ER+) breast cancer is closely correlated with phenotypic characteristics of epithelial-to-mesenchymal transition (EMT). Nonetheless, identifying tumor tissues with a mesenchymal phenotype remains challenging in clinical practice. In this study, we validated the correlation between EMT status and resistance to endocrine therapy in ER+ breast cancer from a transcriptomic perspective.
View Article and Find Full Text PDFCell Mol Biol (Noisy-le-grand)
January 2025
Department of Integrative Medicine, Huashan Hospital, Fudan University, Shanghai, China.
Mitochondrial ribosomal protein S23 (MRPS23), encoded by a nuclear gene, is a well-known driver of proliferation in cancer. It participates in mitochondrial protein translation, and its expression association has been explored in many types of cancer. However, MRPS23 expression associations are rarely reported in breast cancer (BC).
View Article and Find Full Text PDFCancers (Basel)
December 2024
Department of Oncology-Pathology, Karolinska Institutet, 171 64 Solna, Sweden.
The epithelial-to-mesenchymal transition (EMT) is a common feature in early cancer invasion. Increased vimentin is a canonical marker of the EMT; however, the role of vimentin in EMT remains unknown. To clarify this, we induced EMT in lung cancer cells with TGF-β1, followed by treatment with the vimentin-targeting drug ALD-R491, live-cell imaging, and quantitative proteomics.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!