Simplified DGS procedure for large-scale genome structural study.

Biotechniques

Center for Functional Genomics, ENH Research Institute, Northwestern University, 1001 University Place, Evanston, IL 60201, USA.

Published: November 2009

Ditag genome scanning (DGS) uses next-generation DNA sequencing to sequence the ends of ditag fragments produced by restriction enzymes. These sequences are compared to known genome sequences to determine their structure. In order to use DGS for large-scale genome structural studies, we have substantially revised the original protocol by replacing the in vivo genomic DNA cloning with in vitro adaptor ligation, eliminating the ditag concatemerization steps, and replacing the 454 sequencer with Solexa or SOLiD sequencers for ditag sequence collection. This revised protocol further increases genome coverage and resolution and allows DGS to be used to analyze multiple genomes simultaneously.

Download full-text PDF

Source
http://dx.doi.org/10.2144/000113294DOI Listing

Publication Analysis

Top Keywords

large-scale genome
8
genome structural
8
genome
5
simplified dgs
4
dgs procedure
4
procedure large-scale
4
structural study
4
ditag
4
study ditag
4
ditag genome
4

Similar Publications

Sex reversal induced by 17β-estradiol may be achieved by regulating the neuroendocrine system of the Pacific white shrimp Penaeus vannamei.

BMC Genomics

January 2025

Key Laboratory of Breeding Biotechnology and Sustainable Aquaculture, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China.

Background: Due to sexual dimorphism in growth of penaeid shrimp, all-female cultivation is desirable for the aquaculture industry. 17β-estradiol (E2) has the potential to induce the male-to-female sex reversal of decapod species. However, the mechanisms behind it remain poorly understood.

View Article and Find Full Text PDF

Population studies provide insights into the interplay between the gut microbiome and geographical, lifestyle, genetic and environmental factors. However, low- and middle-income countries, in which approximately 84% of the world's population lives, are not equitably represented in large-scale gut microbiome research. Here we present the AWI-Gen 2 Microbiome Project, a cross-sectional gut microbiome study sampling 1,801 women from Burkina Faso, Ghana, Kenya and South Africa.

View Article and Find Full Text PDF

Bridging the Gap: Phage Manufacturing Processes from Laboratory to Agri-Food Industry.

Virus Res

January 2025

Department of Genomics, Branch for Northwest & West Region, Agricultural Biotechnology Research Institute of Iran (ABRII), Agricultural Research, Education and Extension Organization (AREEO), Tabriz, Iran. Electronic address:

Interest in bacteriophages (phages) as sustainable biocontrol agents in the agri-food industry has increased because of growing worries about food safety and antimicrobial resistance (AMR). The phage manufacturing process is examined in this review, with particular attention paid to the crucial upstream and downstream processes needed for large-scale production. Achieving large phage yields requires upstream procedures, including fermentation and phage amplification.

View Article and Find Full Text PDF

The stone marten (Martes foina) is an important species for cytogenetic studies in the order Carnivora. ZooFISH probes created from its chromosomes provided a strong and clean signal in chromosome painting experiments and were valuable for studying the evolution of carnivoran genome architecture. The research revealed that the stone marten chromosome set is similar to the presumed ancestral karyotype of the Carnivora, which added an additional value for the species.

View Article and Find Full Text PDF

The extent of functional sequences within the human genome is a pivotal yet debated topic in biology. Although high-throughput reverse genetic screens have made strides in exploring this, they often limit their scope to known genomic elements and may introduce non-specific effects. This underscores the urgent need for novel functional genomics tools that enable a deeper, unbiased understanding of genome functionality.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!