Several kinds of natural woods and isolated lignins with various syringyl to guaiacyl (S/G) ratios were subjected to thioacidolysis followed by Raney nickel desulfuration to elucidate the relationships between the S/G ratio and the interunit linkage types of lignin. Furthermore, enzymatic dehydrogenation polymers (DHP) were produced by the Zutropf (gradual monolignol addition) method from mixtures of various ratios of coniferyl alcohol and sinapyl alcohol. The analysis of DHPs and natural wood lignins exhibited basically a similar tendency. The existence of both syringyl and guaiacyl units is effective for producing higher amounts of beta-O-4 and 4-O-5 structures, but it lowers the total amount of cinnamyl alcohol and aldehyde end groups. The relative frequency of the beta-beta structure increased, whereas that of beta-5 and 5-5 structures decreased with increasing syringyl units.

Download full-text PDF

Source
http://dx.doi.org/10.1021/jf9035172DOI Listing

Publication Analysis

Top Keywords

syringyl guaiacyl
12
influence syringyl
4
guaiacyl ratio
4
ratio structure
4
structure natural
4
natural synthetic
4
synthetic lignins
4
lignins kinds
4
kinds natural
4
natural woods
4

Similar Publications

The mango cultivar 'Apple' is commercially important in Kenya but highly susceptible to russeting. Russeting refers to an area of fruit skin where the primary (epidermal) surface has been replaced by a secondary (peridermal) surface. The objective was to establish histologies, gene expressions and chemical compositions of a natural periderm, a wound-induced periderm and of cuticles of an un-russeted skin.

View Article and Find Full Text PDF

The inherent heterogeneity, poor compatibility with polymers, and dark color of lignin limit its application in composites. In this study, original lignin (OL) was fractionated sequentially using four green organic solvents to obtain lignin fractions with different chemical structures. These well-defined lignin fractions were then blended with polybutylene succinate (PBS) to fabricate biocomposites.

View Article and Find Full Text PDF

Fabrication of lignin nanoparticles with adjustable size, antioxidant, antibacterial, and hydrophobic properties by a two-step fractionation.

Int J Biol Macromol

January 2025

Beijing Key Laboratory of Lignocellulosic Chemistry, and Engineering Research Center of Forestry Biomass Materials and Energy, Ministry of Education, Beijing Forestry University, Beijing 100083, China. Electronic address:

Article Synopsis
  • Lignin nanoparticles (LNPs) are being recognized for their eco-friendly properties and potential in sustainable materials.
  • A new two-step fractionation technique has created four lignin fractions (F1, F2, F3, and F4) with optimal characteristics for LNPs production, achieving a high recovery rate of 88.7% from alkali lignin.
  • The study highlights how the size and structural properties of LNPs can be controlled for better antibacterial and antioxidant performance, particularly favoring a higher syringyl/guaiacyl ratio for smaller nanoparticles.
View Article and Find Full Text PDF

Study on structural alterations and degradation mechanism of lignin from ozone treated scutched flax tow (SFT).

Int J Biol Macromol

December 2024

Key Laboratory of Science and Technology of Eco-Textile, Ministry of Education, Jiangnan University, Wuxi, Jiangsu 214122, China. Electronic address:

Article Synopsis
  • Ozone is effective in extracting lignocellulosic fibers due to its selectivity for lignin, but the mechanism of lignin degradation during this process is not well understood.
  • Researchers examined the structural changes in milled wood lignin from scutched flax tow before and after ozone treatment using various analytical techniques.
  • The study found that ozone treatment damaged specific lignin linkages and converted S-type lignin units into G-type units, offering important insights into the delignification process in lignocellulosic fiber extraction.
View Article and Find Full Text PDF

This study examines a boreal peatland (the Sagnes peatland, Fanay, Limousin, France) with a depth of 1 m. This peatland is currently in the late stages of organic deposition, as evidenced by the growth of species, along with mosses, in the uppermost level. To gain molecular insights, we conducted an analysis of the lignin and polyphenolic counterparts using HMDS (hexamethyldisilazane) thermochemolysis, enabling the identification of lignin degradation proxies.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!