A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Porous phosphorescent coordination polymers for oxygen sensing. | LitMetric

Porous phosphorescent coordination polymers for oxygen sensing.

J Am Chem Soc

Department of Chemistry, CB#3290, University of North Carolina, Chapel Hill, North Carolina 27599, USA.

Published: January 2010

Phosphorescent cyclometalated iridium tris(2-phenylpyridine) derivatives were designed and incorporated into coordination polymers as tricarboxylate bridging ligands. Three different crystalline coordination polymers were synthesized using a solvothermal technique and were characterized using a variety of methods, including single-crystal X-ray diffraction, PXRD, TGA, IR spectroscopy, gas adsorption measurements, and luminescence measurements. The coordination polymer built from Ir[3-(2-pyridyl)benzoate](3), 1, was found to be highly porous with a nitrogen BET surface area of 764 m(2)/g, whereas the coordination polymers built from Ir[4-(2-pyridyl)benzoate](3), 2 and 3, were nonporous. The (3)MLCT phosphorescence of each of the three coordination polymers was quenched in the presence of O(2). However, only 1 showed quick and reversible luminescence quenching by oxygen, whereas 2 and 3 exhibited gradual and irreversible luminescence quenching by oxygen. The high permanent porosity of 1 allows for rapid diffusion of oxygen through the open channels, leading to efficient and reversible quenching of the (3)MLCT phosphorescence. This work highlights the opportunity of designing highly porous and luminescent coordination polymers for sensing other important analytes.

Download full-text PDF

Source
http://dx.doi.org/10.1021/ja909629fDOI Listing

Publication Analysis

Top Keywords

coordination polymers
24
highly porous
8
3mlct phosphorescence
8
luminescence quenching
8
quenching oxygen
8
coordination
7
polymers
6
porous phosphorescent
4
phosphorescent coordination
4
oxygen
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!