AI Article Synopsis

Article Abstract

Circadian pacemakers are essential to synchronize animal physiology and behavior with the dayrationight cycle. They are self-sustained, but the phase of their oscillations is determined by environmental cues, particularly light intensity and temperature cycles. In Drosophila, light is primarily detected by a dedicated blue-light photoreceptor: CRYPTOCHROME (CRY). Upon light activation, CRY binds to the pacemaker protein TIMELESS (TIM) and triggers its proteasomal degradation, thus resetting the circadian pacemaker. To understand further the CRY input pathway, we conducted a misexpression screen under constant light based on the observation that flies with a disruption in the CRY input pathway remain robustly rhythmic instead of becoming behaviorally arrhythmic. We report the identification of more than 20 potential regulators of CRY-dependent light responses. We demonstrate that one of them, the chromatin-remodeling enzyme KISMET (KIS), is necessary for normal circadian photoresponses, but does not affect the circadian pacemaker. KIS genetically interacts with CRY and functions in PDF-negative circadian neurons, which play an important role in circadian light responses. It also affects daily CRY-dependent TIM oscillations in a peripheral tissue: the eyes. We therefore conclude that KIS is a key transcriptional regulator of genes that function in the CRY signaling cascade, and thus it plays an important role in the synchronization of circadian rhythms with the dayrationight cycle.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2789323PMC
http://dx.doi.org/10.1371/journal.pgen.1000787DOI Listing

Publication Analysis

Top Keywords

circadian
8
circadian photoresponses
8
dayrationight cycle
8
circadian pacemaker
8
cry input
8
input pathway
8
light responses
8
light
6
cry
6
constant light-genetic
4

Similar Publications

Modern habits are becoming more and more disruptive to health. As our days are often filled with circadian disruption and stress exposures, we need to understand how our responses to these external stimuli are shaped and how their mediators can be targeted to promote health. A growing body of research demonstrates the role of the gut microbiota in influencing brain function and behavior.

View Article and Find Full Text PDF

Mood variation under dual regulation of circadian clock and light.

Chronobiol Int

January 2025

Laboratory of Braintime, Graduate Institute of Mind, Brain and Consciousness (GIMBC), Taipei Medical University, Taipei, Taiwan.

The intricate relationship between circadian rhythms and mood is well-established. Disturbances in circadian rhythms and sleep often precede the development of mood disorders, such as major depressive disorder (MDD), bipolar disorder (BD), and seasonal affective disorder (SAD). Two primary factors, intrinsic circadian clocks and light, drive the natural fluctuations in mood throughout the day, mirroring the patterns of sleepiness and wakefulness.

View Article and Find Full Text PDF

Background: Hypotensive episodes detected by 24-hour ambulatory blood pressure (BP) monitoring capture daily cumulative hypotensive stress and could be clinically relevant to cognitive impairment, but this relationship remains unclear.

Methods: We included participants from the Systolic Blood Pressure Intervention Trial (receiving intensive or standard BP treatment) who had 24-hour ambulatory BP monitoring measured near the 27-month visit and subsequent biannual cognitive assessments. We evaluated the associations of hypotensive episodes (defined as systolic BP drops of ≥20 mm Hg between 2 consecutive measurements that reached <100 mm Hg) and hypotensive duration (cumulative time of systolic BP <100 mm Hg) with subsequent cognitive function using adjusted linear mixed models.

View Article and Find Full Text PDF

Roles of calcium in ameloblasts during tooth development: A scoping review.

J Taibah Univ Med Sci

February 2025

Department of Prosthodontics/Dental Material, Dr. Ziauddin Ahmad Dental College, Aligarh Muslim University, India.

Objectives: Calcium ions (Ca) play crucial role in tooth development, particularly in maintaining enamel density during amelogenesis. Ameloblasts require specific proteins such as amelogenin, ameloblastin, enamelin, kallikrein, and collagen for enamel growth. Recent research has highlighted the importance of calcium and fluoride ions, as well as the TRPM7, STIM, and SOCE pathways, in regulating various stages of enamel formation.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!