Purpose Of Review: Age-associated arterial alterations in cells, matrix, and biomolecules are the foundation for the initiation and progression of cardiovascular diseases in older persons. This review focuses on the latest advances on the intertwining of aging and disease within the arterial wall at the cell and molecular levels.
Recent Findings: Endothelial dysfunction, vascular smooth muscle cell (VSMC) proliferation/invasion/secretion, matrix fragmentation, collagenization and glycation are characteristics of an age-associated arterial phenotype that creates a microenvironment enriched with reactive oxygen species (ROS) for the pathogenesis of arterial disease. This niche creates an age-associated arterial secretory phenotype (AAASP), which is orchestrated by the concerted effects of numerous age-modified angiotensin II signaling molecules. Most of these biomolecular, cell, and matrix modifications that constitute the AAASP can be elicited by experimental hypertension or atherosclerosis at a younger age. The arterial AAASP also shares features of a senescence-associated secretory phenotype (SASP) identified in other mesenchymocytes, that is, fibroblasts.
Summary: A subclinical AAASP evolves during aging. Targeting this subclinical AAASP may reduce the incidence and progression of the quintessential age-associated arterial diseases, that is, hypertension and atherosclerosis.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2943205 | PMC |
http://dx.doi.org/10.1097/MNH.0b013e3283361c0b | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!