We found that both tetramethylammonium chloride (TMA-Cl) and tetra-ethylammonium chloride (TEA-Cl), which are used as monovalent cations for northern hybridization, drastically destabilized the tertiary structures of tRNAs and enhanced the formation of tRNA*oligoDNA hybrids. These effects are of great advantage for the hybridization-based method for purification of specific tRNAs from unfractionated tRNA mixtures through the use of an immobilized oligoDNA complementary to the target tRNA. Replacement of NaCl by TMA-Cl or TEA-Cl in the hybridization buffer greatly improved the recovery of a specific tRNA, even from unfractionated tRNAs derived from a thermophile. Since TEA-Cl destabilized tRNAs more strongly than TMA-Cl, it was necessary to lower the hybridization temperature at the sacrifice of the purity of the recovered tRNA when using TEA-Cl. Therefore, we propose two alternative protocols, depending on the desired properties of the tRNA to be purified. When the total recovery of the tRNA is important, hybridization should be carried out in the presence of TEA-Cl. However, if the purity of the recovered tRNA is important, TMA-Cl should be used for the hybridization. In principle, this procedure for tRNA purification should be applicable to any small-size RNA whose gene sequence is already known.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2847242 | PMC |
http://dx.doi.org/10.1093/nar/gkp1182 | DOI Listing |
Genet Med Open
January 2024
Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, United Kingdom.
Purpose: Structural variants such as multiexon deletions and duplications are an important cause of disease but are often overlooked in standard exome/genome sequencing analysis. We aimed to evaluate the detection of copy-number variants (CNVs) from exome sequencing (ES) in comparison with genome-wide low-resolution and exon-resolution chromosomal microarrays (CMAs) and to characterize the properties of de novo CNVs in a large clinical cohort.
Methods: We performed CNV detection using ES of 9859 parent-offspring trios in the Deciphering Developmental Disorders (DDD) study and compared them with CNVs detected from exon-resolution array comparative genomic hybridization in 5197 probands from the DDD study.
Curr Protoc
December 2024
Laboratory of Molecular Biology, The Rockefeller University, New York, New York, USA.
Most pathological conditions of the central nervous system do not affect all cell types to the same extent. Delineation of molecular events underlying disease symptoms, including genetic, epigenetic, and transcriptional changes, thus relies on the ability to characterize a specific cell type separately from others. We have developed a methodology for the collection of nuclear RNA and genomic DNA of specific cell types from frozen post-mortem striatum and cerebral cortex.
View Article and Find Full Text PDFJ Fungi (Basel)
November 2024
Guangxi Key Laboratory of Polysaccharide Materials and Modification, School of Marine Sciences and Biotechnology, Guangxi Minzu University, Nanning 530008, China.
In recent years, the increasing global demand for mushrooms has made the enhancement of mushroom yield a focal point of research. Currently, the primary methods for developing high-yield mushroom varieties include mutation- and hybridization-based breeding. However, due to the long breeding cycles and low predictability associated with these approaches, they no longer meet the demands for high-yield and high-quality varieties in the expansive mushroom market.
View Article and Find Full Text PDFBiosens Bioelectron
October 2023
Department of Pharmaceutical Analysis, The School of Pharmacy, Fujian Medical University, Fuzhou, Fujian Province, 350122, China; Fujian Key Laboratory of Drug Target Discovery and Structural and Functional Research, The School of Pharmacy, Fujian Medical University, Fuzhou, Fujian Province, 350122, China; Innovative Drug Research Institute, Fujian Medical University, Fuzhou, Fujian Province, 350122, China. Electronic address:
Exosomal microRNA (miRNA) are important biomarkers for liquid biopsy, and display clinical molecular signatures for cancer diagnosis. Although advanced detection methods have been established to detect exosomal miRNAs, they are faced with certain challenges. Therefore, we aimed to establish a dual amplification-based electrochemical method for detecting exosomal miRNA.
View Article and Find Full Text PDFAnal Chem
October 2024
College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China.
Diagnostic methods based on CRISPR technology have shown great potential due to their highly specific, efficient, and sensitive detection capabilities. Although the majority of the current studies rely on fluorescent dye-quencher reporters, the limitations of fluorescent dyes, such as poor photostability and small Stokes shifts, urgently necessitate the optimization of reporters. In this study, we developed innovative quantum dot (QD) reporters for the CRISPR/Cas systems, which not only leveraged the advantages of high photoluminescence quantum yield and large Stokes shifts of QDs but were also easily synthesized through a simple one-step hydrothermal method.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!