Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Transcription-related chromatin decondensation has been studied in mammals for clusters of structurally and/or functionally related genes that are coordinately regulated (e.g., the homeobox locus in mice and the major histocompatability complex locus in humans). Plant genes have generally been considered to be randomly distributed throughout the genome, although several examples of metabolic gene clusters for synthesis of plant defense compounds have recently been discovered. Clustering provides for genetic linkage of genes that together confer a selective advantage and may also facilitate coordinate regulation of gene expression by enabling localized changes in chromatin structure. Here, we use cytological methods to investigate components of a metabolic gene cluster for synthesis of developmentally regulated defense compounds (avenacins) in diploid oat (Avena strigosa). Our experiments reveal that expression of the avenacin gene cluster is associated with cell type-specific chromatin decondensation, providing new insights into regulation of gene clusters in plants. Importantly, chromatin decondensation could be visualized not only at the large-scale level but down to the single gene level. We further show that the avenacin and sterol pathways are likely to be inversely regulated at the level of transcription.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2814510 | PMC |
http://dx.doi.org/10.1105/tpc.109.072124 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!