The profound impact of negative power law noise on statistical estimation.

IEEE Trans Ultrason Ferroelectr Freq Control

Raytheon Space and Airborne Systems, El Segundo, CA, USA.

Published: January 2010

This paper investigates the profound impact of negative power law (neg-p) noise - that is, noise with a power spectral density L(p)(f) proportional variant | f |(p) for p < 0 - on the ability of practical implementations of statistical estimation or fitting techniques, such as a least squares fit (LSQF) or a Kalman filter, to generate valid results. It demonstrates that such negp noise behaves more like systematic error than conventional noise, because neg-p noise is highly correlated, non-stationary, non-mean ergodic, and has an infinite correlation time tau(c). It is further demonstrated that stationary but correlated noise will also cause invalid estimation behavior when the condition T >> tau(c) is not met, where T is the data collection interval for estimation. Thus, it is shown that neg-p noise, with its infinite Tau(c), can generate anomalous estimation results for all values of T, except in certain circumstances. A covariant theory is developed explaining much of this anomalous estimation behavior. However, simulations of the estimation behavior of neg-p noise demonstrate that the subject cannot be fully understood in terms of covariant theory or mean ergodicity. It is finally conjectured that one must investigate the variance ergodicity properties of neg-p noise through the use of 4th order correlation theory to fully explain such simulated behavior.

Download full-text PDF

Source
http://dx.doi.org/10.1109/TUFFC.2010.1381DOI Listing

Publication Analysis

Top Keywords

neg-p noise
20
estimation behavior
12
noise
10
profound impact
8
impact negative
8
negative power
8
power law
8
statistical estimation
8
anomalous estimation
8
covariant theory
8

Similar Publications

The profound impact of negative power law noise on statistical estimation.

IEEE Trans Ultrason Ferroelectr Freq Control

January 2010

Raytheon Space and Airborne Systems, El Segundo, CA, USA.

This paper investigates the profound impact of negative power law (neg-p) noise - that is, noise with a power spectral density L(p)(f) proportional variant | f |(p) for p < 0 - on the ability of practical implementations of statistical estimation or fitting techniques, such as a least squares fit (LSQF) or a Kalman filter, to generate valid results. It demonstrates that such negp noise behaves more like systematic error than conventional noise, because neg-p noise is highly correlated, non-stationary, non-mean ergodic, and has an infinite correlation time tau(c). It is further demonstrated that stationary but correlated noise will also cause invalid estimation behavior when the condition T >> tau(c) is not met, where T is the data collection interval for estimation.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!