Background: Plasmalogens, which are key structural phospholipids in brain membranes, are decreased in the brain and serum of patients with Alzheimer disease (AD). We performed this pilot study to evaluate the relation between the levels of circulating plasmalogens and Alzheimer Disease Assessment Scale-Cognitive (ADAS-Cog) scores in patients with AD.

Methods: We evaluated participants' ADAS-Cog scores and serum plasmalogen levels. For the 40 included AD patients with an ADAS-Cog score between 20 and 46, were tested their ADAS-Cog score 1 year later. The levels of docosahexaenoic acid plasmalogen were measured by use of liquid chromatography-tandem mass spectrometry.

Results: We found that the ADAS-Cog score increased significantly in AD patients with circulating plasmalogen levels that were 75%).

Limitations: This was a pilot study with 40 patients, and the results require validation in a larger population.

Conclusion: Our study demonstrates that decreased levels of plasmalogen precursors in the central nervous system correlate with functional decline (as measured by ADAS-Cog scores) in AD patients. The use of both ADAS-Cog and serum plasmalogen data may be a more accurate way of predicting cognitive decline in AD patients, and may be used to decrease the risk of including patients with no cognitive decline in the placebo arm of a drug trial.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2799506PMC
http://dx.doi.org/10.1503/jpn.090059DOI Listing

Publication Analysis

Top Keywords

plasmalogen levels
12
alzheimer disease
12
adas-cog scores
12
adas-cog score
12
patients
9
circulating plasmalogen
8
disease assessment
8
assessment scale-cognitive
8
pilot study
8
scores patients
8

Similar Publications

Plasmalogens Activate AKT/mTOR Signaling to Attenuate Reactive Oxygen Species Production in Spinal Cord Injury.

Curr Gene Ther

January 2025

Neuroscience Center, Wuxi School of Medicine, Jiangnan University, Wuxi, Jiangsu Province, 214122, PR China.

Background: Plasmalogens, the primary phospholipids in the brain, possess intrinsic antioxidant properties and are crucial components of the myelin sheath surrounding neuronal axons. While their neuroprotective effects have been demonstrated in Alzheimer's disease, their potential benefits in spinal cord injury remain unexplored. This study investigates the reparative effects of plasmalogens on spinal cord injury and the underlying mechanisms.

View Article and Find Full Text PDF

We previously reported that plasmalogens, a class of phospholipids, were decreased in a setting of dilated cardiomyopathy (DCM). Plasmalogen levels can be modulated via a dietary supplement called alkylglycerols (AG) which has demonstrated benefits in some disease settings. However, its therapeutic potential in DCM remained unknown.

View Article and Find Full Text PDF

Molecular cloning, expression, and functional analyses of plasmanylethanolamine desaturase gene of Takifugu rubripes.

Gene

January 2025

State Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, Shandong 266071, China; Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao 11 Marine Science and Technology Center, Qingdao, Shandong 266237, China. Electronic address:

The aging population has led to a significant increase in neurodegenerative diseases, particularly Alzheimer's disease (AD), which adversely affects the quality of life and longevity of the elderly. Abnormal plasmalogen metabolism plays a crucial role in the pathogenesis of AD. This study focused ontmem189, a key gene involved in plasmalogen synthesis.

View Article and Find Full Text PDF

Background: Preclinical data have shown that low levels of metabolites with anti-inflammatory properties may impact metabolic disease processes. However, the association between mid-life levels of such metabolites and long-term ASCVD risk is not known.

Methods: We characterised the plasma metabolomic profile (1228 metabolites) of 1852 participants (58.

View Article and Find Full Text PDF

Amyloid beta (Aβ) is a neuronal metabolic product that plays an important role in maintaining brain homeostasis. Normally, intensive brain Aβ formation is accompanied by its effective lymphatic removal. However, the excessive accumulation of brain Aβ is observed with age and during the development of Alzheimer's disease (AD) leading to cognitive impairment and memory deficits.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!