The 1990s epidemiological studies by Payment and colleagues suggested that an increase in gastrointestinal illnesses observed in the population consuming tap water from a system meeting all water quality regulations might be associated with distribution system deficiencies. In the current study, the vulnerability of this distribution system to microbial intrusion was assessed by characterizing potential sources of contamination near pipelines and monitoring the frequency and magnitude of negative pressures. Bacterial indicators of fecal contamination were recovered more frequently in the water from flooded air-valve vaults than in the soil or water from pipe trenches. The level of fecal contamination in these various sources was more similar to levels from river water rather than wastewater. Because of its configuration, this distribution system is vulnerable to negative pressures when pressure values out of the treatment plant reach or drop below 172 kPa (25 psi), which occurred nine times during a monitoring period of 17 months. The results from this investigation suggest that this distribution system is vulnerable to contamination by intrusion. Comparison of the frequency of occurrence of negative pressure events and repair rates with data from other distribution systems suggests that the system studied by Payment and colleagues is not atypical.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/es901988y | DOI Listing |
BMC Med Educ
January 2025
Research Center for Environmental Determinants of Health, Health Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran.
Aims: This study evaluates both financial and non-financial preferences of nursing students to choose a hospital for work in future.
Background: In Iran's healthcare system, the persistent shortage and uneven distribution of nurses have been significant challenges. Addressing such issues requires attention to nurses' preferences, which can be instrumental in designing effective interventions.
BMC Health Serv Res
January 2025
School of Library and Information Management, Emporia State University, Emporia, KS, USA.
Background And Purpose: Despite the increasing integration of information technologies in healthcare settings, limited attention has been given to understanding technostress among health practitioners in hospitals. This study aims to assess the prevalence of technostress creators among health practitioners and explore potential factors contributing to its occurrence, with the ultimate goal of informing strategies to mitigate its impact.
Method: Data were collected through a validated questionnaire administered to health practitioners at Tehran Apadana Hospital in Iran.
BMC Med Res Methodol
January 2025
Systems Engineering & Operations Research, George Mason University, Fairfax, VA, 22030, USA.
Background: In this work, we implement a data-driven approach using an aggregation of several analytical methods to study the characteristics of COVID-19 daily infection and death time series and identify correlations and characteristic trends that can be corroborated to the time evolution of this disease. The datasets cover twelve distinct countries across six continents, from January 22, 2020 till March 1, 2022. This time span is partitioned into three windows: (1) pre-vaccine, (2) post-vaccine and pre-omicron (BA.
View Article and Find Full Text PDFBMC Genomics
January 2025
Shanghai Key Laboratory of Plant Functional Genomics and Resources, Shanghai Chenshan Botanical Garden, No. 3888 Chenhua Road, Songjiang District, Shanghai, 201602, China.
Background: Despite the rapid advancement of high-throughput sequencing, simple sequence repeats (SSRs) remain indispensable molecular markers for various applied and research tasks owing to their cost-effectiveness and ease of use. However, existing SSR markers cannot meet the growing demand for research on lotus (Nelumbo Adans.) given their scarcity and weak connections to the lotus genome.
View Article and Find Full Text PDFSci Rep
January 2025
Graduate Program in Electrical and Computer Engineering, Universidade Tecnológica Federal do Paraná (UTFPR), Curitiba, 80230-901, Brazil.
Modeling the Digital Twin (DT) is an important resource for accurately representing the physical entity, enabling it to deliver functional services, meet application requirements, and address the disturbances between the physical and digital realms. This article introduces the Log Mean Kinematics Difference Synchronization (SyncLMKD) to measure the kinematic variations distributed among Digital Twin elements to ensure symmetric values relative to a reference. The proposed method employs abductive reasoning and draws inspiration from the Log Mean Temperature Difference (LMTD).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!