The heterogeneous reduction of U(VI) to U(IV) by ferrous iron is believed to be a key process influencing the fate and transport of U in the environment. The reactivity of both sorbed and structural Fe(II) has been studied for numerous substrates, including magnetite. Published results from U(VI)-magnetite experiments have been variable, ranging from no reduction to clear evidence for the formation of U(IV). In this contribution, we used XAS and high resolution (+/-cryogenic) XPS to study the interaction of U(VI) with nanoparticulate magnetite. The results indicated that U(VI) was partially reduced to U(V) with no evidence of U(IV). However, thermodynamic calculations indicated that U phases with average oxidation states below (V) should have been stable, indicating that the system was not in redox equilibrium. A reaction pathway that involves incorporation and stabilization of U(V) and U(VI) into secondary phases is invoked to explain the observations. The results suggest an important and previously unappreciated role of U(V) in the fate and transport of uranium in the environment.

Download full-text PDF

Source
http://dx.doi.org/10.1021/es9014597DOI Listing

Publication Analysis

Top Keywords

reduction uvi
8
fate transport
8
uvi
5
influence dynamical
4
dynamical conditions
4
conditions reduction
4
uvi magnetite-solution
4
magnetite-solution interface
4
interface heterogeneous
4
heterogeneous reduction
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!