Controlled growth/patterning of Ni nanohoneycombs on various desired substrates.

Langmuir

Department of Mechanical and Materials Engineering, The University of Western Ontario, London, Ontario, N6A 5B9, Canada.

Published: March 2010

We report a two-step process for the growth/patterning of Ni honeycomb nanostructures on various substrates, such as carbon paper, carbon nanotubes (CNTs), silicon wafers, and copper grids, via the combination of a sputter-coating/patterning technique and a replacement reaction solution method. The morphology, crystallinity, and chemical composition of the honeycombs were analyzed by SEM, TEM, high-resolution TEM, and EDX. These honeycombs are composed of numerous nanocells, several tens of nanometers in diameter and with cell wall thickness of approximately 10 nm, randomly connecting to each other. The growth process of honeycomb nanostructures has been systematically studied. Interestingly, the diameter and wall thickness of the cells could be easily tuned by simply adjusting the experimental parameters, such as the concentrations and cations of metal salts. Additionally, this simple method has been successfully extended to synthesize Co nanostructures with well-controlled morphologies, which indicates the great potential of this strategy in the synthesis of other metal nanostructures on various desired substrates. These metal-substrate composites, especially with desired patterns, are expected to be ideal candidates for wide application in modern electronic and optoelectronic devices, sensors, fuel cells, and energy storage systems.

Download full-text PDF

Source
http://dx.doi.org/10.1021/la9034408DOI Listing

Publication Analysis

Top Keywords

desired substrates
8
honeycomb nanostructures
8
wall thickness
8
controlled growth/patterning
4
growth/patterning nanohoneycombs
4
nanohoneycombs desired
4
substrates report
4
report two-step
4
two-step process
4
process growth/patterning
4

Similar Publications

Efficient Spermidine Production Using a Multi-Enzyme Cascade System Utilizing Methionine Adenosyltransferase from Lactobacillus fermentum with Reduced Product Inhibition and Acidic pH Preference.

J Biotechnol

January 2025

The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 1800 Lihu Avenue, Wuxi, Jiangsu 214122, China; School of Health Sciences, Fuyao University of Science & Technology, Fuzhou, Fujian Province, China. Electronic address:

Methionine adenosyltransferases (MATs; EC 2.5.1.

View Article and Find Full Text PDF

The study aimed to develop a superhydrophobic coating on the aluminium alloy 2024-T3 surface. The desired surface roughness and low surface energy were achieved with SiO nanoparticles, synthesised via the Stöber method and modified with alkyl silane (AS) or perfluoroalkyl silane (FAS). To enhance particle adhesion to the alloy substrate, nanoparticles were incorporated into a hybrid sol-gel coating composed of tetraethyl orthosilicate, methyl methacrylate, and 3-methacryloxypropyl trimethoxysilane.

View Article and Find Full Text PDF

An eight-element MIMO antenna with a neutralization line was utilized for future 5G mm-wave applications. The MIMO configuration was designed for two ports, four ports and eight ports to validate the desired impedance and radiation characteristics. The measured results in terms of MIMO and scattering parameters correlate well with the simulated one.

View Article and Find Full Text PDF

Nowadays, several processes to enrich desired bioactive compounds in plant extracts have been developed. The objective of the present study was to assess the performance of bovine serum albumin in increasing the extractive yields of anthraquinones and diarylheptanoids from their respective raw plant powder extracts. Aloe emodin, rhein, emodin, and chrysophanol, from , , , and , and curcumin from were analyzed in parent dry extracts, solubilized either with water, ethanol, or hydro-alcoholic mixtures, and in ones treated with aqueous solutions of bovine serum albumin by HPLC with UV/Vis detection.

View Article and Find Full Text PDF

Annealing Study on Praseodymium-Doped Indium Zinc Oxide Thin-Film Transistors and Fabrication of Flexible Devices.

Micromachines (Basel)

December 2024

Guangdong Basic Research Center of Excellence for Energy & Information Polymer Materials, State Key Laboratory of Luminescent Materials and Devices, School of Materials Sciences and Engineering, South China University of Technology, Guangzhou 510640, China.

The praseodymium-doped indium zinc oxide (PrIZO) thin-film transistor (TFT) is promising for applications in flat-panel displays, due to its high carrier mobility and stability. Nevertheless, there are few studies on the mechanism of annealing on PrIZO films and the fabrication of flexible devices. In this work, we first optimized the annealing-process parameters on the glass substrate.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!