Extreme sensitivity of circular dichroism to long-range excitonic couplings in helical supramolecular assemblies.

J Phys Chem B

Theory of Polymers and Soft Matter, Department of Applied Physics and Eindhoven Polymer Laboratories, Technische Universiteit Eindhoven, P.O. Box 513, 5600 MB Eindhoven, The Netherlands.

Published: January 2010

Circular dichroism (CD) spectroscopy is an ideal tool for studying the self-assembly of helical supramolecular assemblies since it is very sensitive to extended excitonic couplings between chiral chromophores. We show that the CD spectrum retains its high sensitivity to long-range interactions even in the presence of extreme disorder and strong interaction with vibrations when excitations are mainly localized on individual molecules. We derive a universal expression for the first moment of the CD spectrum of helical assemblies in terms of a modulated sum over excitonic couplings, which is independent of the strength of the energetic disorder, the spatial correlation of the disorder, and the strength of the interaction with vibrations. This demonstrates that excitonic couplings can be directly extracted from experimental CD spectra without having information about the energetic disorder and vibrational interactions. We apply our results to helical assemblies of functionalized chiral oligo(p-phenylenevinylene) molecules and show that existing theoretical values for the excitonic couplings should be adapted in order to obtain agreement with the experimental CD spectrum.

Download full-text PDF

Source
http://dx.doi.org/10.1021/jp911081bDOI Listing

Publication Analysis

Top Keywords

excitonic couplings
20
circular dichroism
8
helical supramolecular
8
supramolecular assemblies
8
interaction vibrations
8
helical assemblies
8
energetic disorder
8
excitonic
5
couplings
5
extreme sensitivity
4

Similar Publications

Collective optical properties can emerge from an ordered ensemble of emitters due to interactions between the individual units. Superlattices of halide perovskite nanocrystals exhibit collective light emission, influenced by dipole-dipole interactions between simultaneously excited nanocrystals. This coupling changes both the emission energy and rate compared to the emission of uncoupled nanocrystals.

View Article and Find Full Text PDF

We have grown (111)- and (001)-oriented NiO thin films on (0001)-Sapphire and (001)-MgO substrates using pulsed laser deposition (PLD), respectively. DC magnetic susceptibility measurements underline that the Néel temperatures of the samples are beyond room-temperature. This is further confirmed by the presence of two-magnon Raman scattering modes in these films in ambient conditions.

View Article and Find Full Text PDF

Fermi Polaron in Atom-Ion Hybrid Systems.

Phys Rev Lett

December 2024

Dipartimento di Fisica, Università di Trieste, Strada Costiera 11, I-34151 Trieste, Italy.

Atom-ion hybrid systems are promising platforms for the quantum simulation of polaron physics in certain quantum materials. Here, we investigate the ionic Fermi polaron, a charged impurity in a polarized Fermi bath, at zero temperature using quantum Monte Carlo techniques. We compute the energy spectrum, residue, effective mass, and structural properties.

View Article and Find Full Text PDF

Lower-dimensional organic-inorganic hybrid perovskite materials promise to revolutionize the optoelectronics industry due to the tremendous possibilities of exotic control on excitonic properties driven via quantum confinement. Flexible organic cations acting as spacers and stabilizers enhance electron-phonon couplings, further amplifying the potential for modular light-matter interactions in these materials. Herein we unravel the nature of excitons in a quasi-1D chain of corner-sharing bismuth iodide octahedra with an intrinsic quantum well structure stabilized by a hexyl-diammonium cation.

View Article and Find Full Text PDF

Singlet exciton fission has the potential to increase the efficiency of crystalline silicon solar cells beyond the conventional single junction limit. Perhaps the largest obstacle to achieving this enhancement is uncertainty about energy coupling mechanisms at the interfaces between silicon and exciton fission materials such as tetracene. Here, the previously reported silicon-hafnium oxynitride-tetracene structure is studied and a combination of magnetic-field-dependent silicon photoluminescence measurements and density functional theory calculations is used to probe the influence of the interlayer composition on the triplet transfer process across the hafnium oxynitride interlayer.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!