The pressure-temperature (P-T) melting curve of lidocaine was determined (dP/dT = 3.56 MPa K(-1)), and the lidocaine-water system was investigated as a function of temperature and pressure. The lidocaine-water system exhibits a monotectic equilibrium at 321 K (ordinary pressure) whose temperature increases as the pressure increases until the two liquids become miscible. A hydrate, unstable at ordinary pressure, was shown to form, on increasing the pressure, from about 70 MPa at low temperatures (200-300 K). The thermodynamic conditions of its stability were inferred from the location of the three-phase equilibria involving the hydrate in the lidocaine-water pressure-temperature-mole fraction (P-T-x) diagram.

Download full-text PDF

Source
http://dx.doi.org/10.1002/jps.22039DOI Listing

Publication Analysis

Top Keywords

lidocaine-water system
12
phase diagram
8
ordinary pressure
8
pressure
5
liquid-liquid miscibility
4
miscibility gaps
4
gaps hydrate
4
hydrate formation
4
formation drug-water
4
drug-water binary
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!