Although signal pathways triggered via the CD40 molecule are well characterized, those induced via CD154 are less known. This study demonstrates that engagement of CD154 in Jurkat D1.1 cells with soluble CD40 leads to PKC alpha and delta activation, calcium mobilization, and phosphorylation of the Map kinases ERK1/2 and p38. Such response is accompanied by significant recruitment of CD154 into lipid rafts. Disruption of lipid rafts integrity with nystatin or methyl beta-cyclodextrin abrogated PKCalpha PKCdelta and p38 phosphorylation, but had no effect on ERK1/2 phosphorylation. Inhibition of PKC activation completely abolished p38 phosphorylation but had no effect on ERK1/2 phosphorylation, suggesting that localization of CD154 within lipid rafts is an absolute requirement for CD154-induced PKCalpha- and PKCdelta-dependent p38 phosphorylation. Furthermore, CD154 acts as co-stimulator for the production of IL-2 in an APC-superantigen-T-cell activation model. The results obtained demonstrate for the first time, that lipid rafts are of immunological relevance for CD154-triggered signals, and reinforce the importance of CD154 in T-cell activation.

Download full-text PDF

Source
http://dx.doi.org/10.1002/eji.200939646DOI Listing

Publication Analysis

Top Keywords

lipid rafts
20
p38 phosphorylation
12
cd154 lipid
8
phosphorylation erk1/2
8
erk1/2 phosphorylation
8
cd154
6
phosphorylation
6
lipid
5
rafts
5
critical role
4

Similar Publications

Rheumatoid arthritis (RA) is a chronic autoimmune disease characterized by joint swelling, pain, and bone remodeling. We previously reported that autotaxin (ATX) deficiency disrupts lipid rafts in macrophages. Lipid raft disruption results in the dysregulation of RANK signaling, which is crucial for osteoclastogenesis and the pathogenesis of RA.

View Article and Find Full Text PDF

Understanding the self-assembly and molecular structure of mRNA lipid nanoparticles at real size: Insights from the ultra-large-scale simulation.

Int J Pharm

December 2024

State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau 999078, China; Faculty of Health Sciences, University of Macau, Macau 999078, China. Electronic address:

Messenger RNA (mRNA) encapsulated in lipid nanoparticles (LNPs) represents a cutting-edge delivery technology that played a pivotal role during the COVID-19 pandemic and in advancing vaccine development. However, molecular structure of mRNA-LNPs at real size remains poorly understood, with conflicting results from various experimental studies. In this study, we aim to explore the assembly process and structural characteristics of mRNA-LNPs at realistic sizes using coarse-grained molecular dynamic simulations.

View Article and Find Full Text PDF

Purpose: Chronic suppurative otitis media (CSOM) is a prominent contributor to preventable hearing loss globally. Probiotic therapy has attracted research interest in human infectious and inflammatory disease. As the most prevalent probiotic, the role of in CSOM remains poorly defined.

View Article and Find Full Text PDF

Critical limb ischemia (CLI) is the most advanced stage of peripheral arterial disease, posing a high risk of mortality. Sphingomyelin, a sphingolipid synthesized by sphingomyelin synthases (SMSs) 1 and 2, plays an essential role in signal transduction as a component of lipid rafts. However, the role of sphingomyelin in the inflammation of ischemic skeletal muscles remains unclear.

View Article and Find Full Text PDF

Lipid rafts are subdomains of the cell membrane that are rich in cholesterol and glycolipids, and they are involved in various cellular processes and pathophysiological mechanisms. However, the specific role of lipid rafts in hepatocyte dysfunction during the pathogenesis of metabolic dysfunction-associated steatotic liver disease (MASLD) is not fully understood. In this study, we investigated the impact of lipid rafts on insulin sensitivity and hepatocyte injury induced by saturated free fatty acids (sFFAs) using primary-cultured mouse hepatocytes.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!