Identity theft in the delivery room.

J Perinatol

Department of Pediatrics, St Lukes Regional Medical Center, Boise, ID 83712, USA.

Published: January 2010

Download full-text PDF

Source
http://dx.doi.org/10.1038/jp.2009.141DOI Listing

Publication Analysis

Top Keywords

identity theft
4
theft delivery
4
delivery room
4
identity
1
delivery
1
room
1

Similar Publications

Privacy-preserving record linkage (PPRL) technology, crucial for linking records across datasets while maintaining privacy, is susceptible to graph-based re-identification attacks. These attacks compromise privacy and pose significant risks, such as identity theft and financial fraud. This study proposes a zero-relationship encoding scheme that minimizes the linkage between source and encoded records to enhance PPRL systems' resistance to re-identification attacks.

View Article and Find Full Text PDF
Article Synopsis
  • Big data analytics is revolutionizing clinical decision-making by utilizing vast healthcare data to create evidence-based solutions, but it raises significant privacy and security concerns, especially regarding sensitive medical images stored in the cloud.
  • The proposed project aims to enhance patient care through a machine learning-based anomaly detection system for medical images, addressing current limitations in existing detection methods that struggle with resource consumption and real-time performance.
  • The research focuses on improving data processing techniques, including feature selection and handling missing values, employing advanced algorithms like recursive feature elimination and dynamic principal component analysis for more effective anomaly detection.
View Article and Find Full Text PDF

Palm-vein has been widely used for biometric recognition due to its resistance to theft and forgery. However, with the emergence of adversarial attacks, most existing palm-vein recognition methods are vulnerable to adversarial image attacks, and to the best of our knowledge, there is still no study specifically focusing on palm-vein image attacks. In this paper, we propose an adversarial palm-vein image attack network that generates highly similar adversarial palm-vein images to the original samples, but with altered palm-identities.

View Article and Find Full Text PDF

Face Omron Ring: Proactive defense against face forgery with identity awareness.

Neural Netw

December 2024

College of Cyber Security, Jinan University, Guangzhou, China. Electronic address:

In the era of Artificial Intelligence Generated Content (AIGC), face forgery models pose significant security threats. These models have caused widespread negative impacts through the creation of forged products targeting public figures, national leaders, and other Persons-of-interest (POI). To address this, we propose the Face Omron Ring (FOR) to proactively protect the POI from face forgery.

View Article and Find Full Text PDF

At present, social networks have become an indispensable medium in people's daily life and work. However, concerns about personal privacy leakage and identity information theft have also emerged. Therefore, a communication network system based on network slicing is constructed to strengthen the protection of communication network privacy.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!