AI Article Synopsis

  • Mitochondrial fusion is regulated by the protein OPA1, which undergoes cleavage by specific proteases when mitochondria are dysfunctional, leading to fragmentation.
  • Two classes of metallopeptidases, m-AAA protease isoenzymes and the OMA1 peptidase, control the cleavage of OPA1 in mitochondria, ensuring a balance between its long and short isoforms essential for fusion.
  • Loss of specific proteins like AFG3L2 disrupts the stability of long OPA1 isoforms, causing increased processing by OMA1, which is linked to conditions affecting mitochondrial function and neurodegenerative diseases.

Article Abstract

Mitochondrial fusion depends on the dynamin-like guanosine triphosphatase OPA1, whose activity is controlled by proteolytic cleavage. Dysfunction of mitochondria induces OPA1 processing and results in mitochondrial fragmentation, allowing the selective removal of damaged mitochondria. In this study, we demonstrate that two classes of metallopeptidases regulate OPA1 cleavage in the mitochondrial inner membrane: isoenzymes of the adenosine triphosphate (ATP)-dependent matrix AAA (ATPase associated with diverse cellular activities [m-AAA]) protease, variable assemblies of the conserved subunits paraplegin, AFG3L1 and -2, and the ATP-independent peptidase OMA1. Functionally redundant isoenzymes of the m-AAA protease ensure the balanced accumulation of long and short isoforms of OPA1 required for mitochondrial fusion. The loss of AFG3L2 in mouse tissues, down-regulation of AFG3L1 and -2 in mouse embryonic fibroblasts, or the expression of a dominant-negative AFG3L2 variant in human cells decreases the stability of long OPA1 isoforms and induces OPA1 processing by OMA1. Moreover, cleavage by OMA1 causes the accumulation of short OPA1 variants if mitochondrial DNA is depleted or mitochondrial activities are impaired. Our findings link distinct peptidases to constitutive and induced OPA1 processing and shed new light on the pathogenesis of neurodegenerative disorders associated with mutations in m-AAA protease subunits.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2806285PMC
http://dx.doi.org/10.1083/jcb.200906084DOI Listing

Publication Analysis

Top Keywords

opa1 processing
16
mitochondrial fusion
12
m-aaa protease
12
processing mitochondrial
8
opa1
8
induces opa1
8
mitochondrial
7
regulation opa1
4
processing
4
fusion m-aaa
4

Similar Publications

Doxorubicin (DOX) is a commonly used chemotherapeutic medication for treating malignancies, although its cardiotoxicity limits its use. There is growing evidence that alteration of the mitochondrial fission/fusion dynamic processes accompanied by excessive reactive oxygen species (ROS) production and alteration of calcium Ca homeostasis are potential underlying mechanisms of DOX-induced cardiotoxicity (DIC). Metformin (Met) is an AMP-activated protein kinase (AMPK) activator that has antioxidant properties and cardioprotective effects.

View Article and Find Full Text PDF

Cytoplasmic proliferating cell nuclear antigen (PCNA) is highly expressed in acute myeloid leukemia (AML) cells, supporting oxidative metabolism and leukemia stem cell (LSC) growth. We report on AOH1996 (AOH), an oral compound targeting cancer-associated PCNA, which shows significant antileukemic activity. AOH inhibited growth in AML cell lines and primary CD34 + CD38 - blasts (LSC-enriched) in vitro while sparing normal hematopoietic stem cells (HSCs).

View Article and Find Full Text PDF

Background: Loss of stromal interaction molecule 1 (STIM1) expression in smooth muscle cells protects against ischemia-reperfusion (I/R) injury. Whether and how decreased STIM1 expression in cardiomyocytes (CM) impacts cardiac remodeling in response to I/R injury remains unknown.

Objective: To examine mechanisms by which decreased CM-STIM1 expression in the adult heart modulates cardiac function before and after I/R injury.

View Article and Find Full Text PDF

Mitochondrial dynamics significantly play a major role in the pathogenesis of neurodegenerative diseases, such as Parkinson's disease and Alzheimer's disease. The dysregulation of mitochondrial biogenesis and function, characterized by impaired fission and fusion processes mediated by a number of proteins, in particular, Drp1, Mfn1, Mfn2, Opa1, and PGC-1α, contributes to neuronal vulnerability and degeneration. Insufficient mitophagy and disrupted mitochondrial transport exacerbate oxidative stress and neurotoxicity.

View Article and Find Full Text PDF

SREBP1c-Mediated Transcriptional Repression of YME1L1 Contributes to Acute Kidney Injury by Inducing Mitochondrial Dysfunction in Tubular Epithelial Cells.

Adv Sci (Weinh)

December 2024

Department of Nephrology, Chongqing Key Laboratory of Prevention and Treatment of Kidney Disease, Chongqing Clinical Research Center of Kidney and Urology Diseases, Xinqiao Hospital, Army Medical University (Third Military Medical University), Chongqing, 400037, China.

Acute kidney injury (AKI) is a prevalent clinical syndrome with high morbidity and mortality. Accumulating studies suggest mitochondrial dysfunction as the typical characteristics and key process of AKI, but the underlying mechanism remains elusive. The YME1-like 1 (YME1L1) ATPase, an inner mitochondrial membrane protein, is screened and identified to be downregulated in renal tubular epithelial cells of various mouse models and patients of AKI.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!