Objectives: We have previously shown in a model of pressure-overload hypertrophy that there is increased cardiomyocyte apoptosis during the transition from peak hypertrophy to ventricular decompensation. Electron transport chain dysfunction is believed to play a role in this process through the production of excessive reactive oxygen species. In this study we sought to determine electron transport chain function in pressure-overload hypertrophy and the role of oxidative stress in myocyte apoptosis.

Methods And Results: Neonatal rabbits underwent thoracic aortic banding at 10 days of age. Compensated hypertrophy (4 weeks of age), decompensated hypertrophy (6 weeks of age), and age-matched controls (n = 4-8 per group) as identified by serial echocardiography were studied. Electron transport chain complex activities were determined by spectophotometry in isolated mitochondria. Complex I was significantly decreased (P = .005) at 4 weeks and further decreased at 6 weeks (P = .001). Complex II was significantly decreased at both time points (4 weeks, P = .003; 6 weeks, P = .009). However, hyddrogen peroxide production, measured in isolated mitochondria by fluorescence spectroscopy, was significantly decreased at 4 weeks of age in banded animals compared with controls (P = .038), and mitochondrial DNA oxidative damage (measurement of 8- hydroxydeoxyguanosine by enzyme-linked immunosorbent assay) was also significantly decreased at 4 weeks of age (P = .031). Mitochondrial activated apoptosis was determined by Bax/Bcl-2 ratios (immunoblotting). Bax/Bcl-2 levels were significantly increased in banded animals at 6 weeks.

Conclusions: In pressure-overload hypertrophy, the transition from compensated left ventricular hypertrophy to failure and cardiomyocyte apoptosis is preceded by mitochondrial complex I and II dysfunction followed by an increase in Bax/Bcl-2 ratios. The mechanism of apoptosis initiation is independent of increased oxidative stress.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2875266PMC
http://dx.doi.org/10.1016/j.jtcvs.2009.08.060DOI Listing

Publication Analysis

Top Keywords

electron transport
16
transport chain
16
pressure-overload hypertrophy
16
weeks age
16
cardiomyocyte apoptosis
12
oxidative stress
12
decreased weeks
12
chain dysfunction
8
hypertrophy
8
weeks
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!